Site affinity effects upon charge injection into siloxane-based monolayers.

J Phys Chem B

Department of Chemical Research Support, and Department of Organic Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel.

Published: February 2006


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Submolecular electrical information is successfully derived by applying element-specific, chemically resolved electrical measurements to a covalently bound stilbazole-based monolayer on a silicon substrate. Pronounced affinity effects are found in the response of adjacent atomic sites to external charge injection, accompanied by intramolecular polarization variations. These noncontact electrical read-out capabilities may provide a first entry toward the realization of organic devices based on submolecular electrical units.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0567164DOI Listing

Publication Analysis

Top Keywords

affinity effects
8
charge injection
8
submolecular electrical
8
site affinity
4
effects charge
4
injection siloxane-based
4
siloxane-based monolayers
4
monolayers submolecular
4
electrical
4
electrical derived
4

Similar Publications

Polyethylene terephthalate (PET) glycolysis presents an effective solution to address plastic pollution while promoting the utilization of renewable resources. It is highly important to gain in-depth insights into the identification of the well-defined active sites and the structure-activity relationships in PET glycolysis. Herein, PW@UiO-67 with different exposed crystal facets, i.

View Article and Find Full Text PDF

This study utilized integrated sensory-guided, machine learning, and bioinformatics strategies identify umami-enhancing peptides from , investigated their mechanism of umami enhancement, and confirmed their umami-enhancing properties through sensory evaluations and electronic tongue. Three umami-enhancing peptides (APDGLPTGQ, SDDGFQ, and GLGDDL) demonstrated synergistic/additive effects by significantly enhancing umami intensity and duration in monosodium glutamate (MSG). Furthermore, molecular docking showed that these umami-enhancing peptides enhanced both the binding affinity and interaction forces between MSG and the T1R1/T1R3 receptor system, thereby enhancing umami perception.

View Article and Find Full Text PDF

Incorporating non-natural amino acids (NNAAs) into peptides enhances therapeutic properties, including binding affinity, metabolic stability, and half-life time. The pursuit of novel NNAAs for improved peptide designs faces the challenge of effective synthesis of these building blocks as well as the entire peptide itself. Solid-Phase Peptide Synthesis (SPPS) is an essential technology for the automated assembly of peptides with NNAAs, necessitating careful protection for effective coupling of amino acids in the peptide chain.

View Article and Find Full Text PDF

Background And Aim: Bovine babesiosis, caused by , poses significant economic challenges to Kazakhstan's cattle industry. Early and accurate detection is crucial for interrupting transmission cycles, particularly in regions lacking advanced diagnostic infrastructure. This study aimed to develop a rapid lateral flow immunoassay (LFIA) using a recombinant C-terminal fragment of the recombinant rhoptry-associated protein 1 (rRap1) antigen for the serodiagnosis of bovine babesiosis.

View Article and Find Full Text PDF

, a causative agent of lymphatic filariasis, relies on its endosymbiont for survival. MurE ligase, a key enzyme in peptidoglycan biosynthesis, serves as a promising drug target for anti-filarial therapy. In this study, we employed a hierarchical virtual screening pipeline to identify phytochemical inhibitors targeting the MurE enzyme of the endosymbiont of (MurE).

View Article and Find Full Text PDF