Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dendritic cells can be considered natural adjuvants and are able to act as cellular vaccines to protect against disease. Adoptive transfer of Ag-pulsed bone marrow-derived dendritic cells (BMDCs) enhanced expulsion of the intestinal nematode, Trichinella spiralis, from the small intestine. IL 9 is a critical cytokine in protective immunity to intestinal nematode infection and is believed to enhance Th2 immune responses. Deriving dendritic cells from an IL-9 transgenic (IL-9t) mouse has enabled a detailed investigation of the importance of IL-9 during Ag presentation. Indeed, IL-9t dendritic cells significantly enhanced T cell proliferation and Th2 responses and, after adoptive transfer, enhanced parasite-specific IgG1 and intestinal mastocytosis in vivo, leading to accelerated expulsion of adult worms from the intestine. Overall, this paper demonstrates that dendritic cell vaccination can be used to successfully protect the host against intestinal nematode infection and suggests that IL-9 can act as a potent type 2 adjuvant during Ag presentation and the early stages of Th2 activation.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.176.4.2505DOI Listing

Publication Analysis

Top Keywords

dendritic cells
20
intestinal nematode
12
immunity intestinal
8
adoptive transfer
8
nematode infection
8
dendritic
6
intestinal
5
cells
5
induction enhanced
4
enhanced immunity
4

Similar Publications

Single-cell analysis of Barrett's esophagus and carcinoma reveals cell types conferring risk via genetic predisposition.

Cell Genom

September 2025

Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany. Electronic address:

Inherited genetic variants contribute to Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC), but it is unknown which cell types are involved in this process. We performed single-cell RNA sequencing of BE, EAC, and paired normal tissues and integrated genome-wide association data to determine cell-type-specific genetic risk and cellular processes that contribute to BE and EAC. The analysis reveals that EAC development is driven to a greater extent by local cellular processes than BE development and suggests that one cell type of BE origin (intestinal metaplasia cells) and cellular processes that control the differentiation of columnar cells are of particular relevance for EAC development.

View Article and Find Full Text PDF

Resolve and regulate: Alum nanoplatform coordinating STING availability and agonist delivery for enhanced anti-tumor immunotherapy.

Biomaterials

September 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.

View Article and Find Full Text PDF

Problem: Preeclampsia (PE) is a leading cause of perinatal maternal and fetal mortality. Clinical and pathological studies suggest that placental and decidual cell dysfunction may contribute to this condition. However, the pathogenesis of PE remains poorly understood.

View Article and Find Full Text PDF

Dendritic cells: understanding ontogeny, subsets, functions, and their clinical applications.

Mol Biomed

September 2025

National Key Laboratory of Immunity and Inflammation & Institute of Immunology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.

Dendritic cells (DCs) play a central role in coordinating immune responses by linking innate and adaptive immunity through their exceptional antigen-presenting capabilities. Recent studies reveal that metabolic reprogramming-especially pathways involving acetyl-coenzyme A (acetyl-CoA)-critically influences DC function in both physiological and pathological contexts. This review consolidates current knowledge on how environmental factors, tumor-derived signals, and intrinsic metabolic pathways collectively regulate DC development, subset differentiation, and functional adaptability.

View Article and Find Full Text PDF

The purpose of this study was to investigate potential therapeutic targets for osteosarcoma (OS) and offer hints regarding genetic factors for OS treatment using a bioinformatics method. This study processed 3 OS datasets from the gene expression omnibus database using R software, screening for differentially expressed genes (DEGs). After enrichment analysis, based on expression quantitative trait loci data and the genome-wide association study data of OS, Mendelian randomization analysis was used to screen the genes closely related to OS disease, which intersect with DEGs to obtain co-expressed genes, validation datasets were employed to verify the results.

View Article and Find Full Text PDF