98%
921
2 minutes
20
Fluorescent photon scattering is known to distort optical recordings of cardiac transmembrane potentials; however, this process is not well quantified, hampering interpretation of experimental data. This study presents a novel model, which accurately synthesizes fluorescent recordings over the irregular geometry of the rabbit ventricles. Using the model, the study aims to provide quantification of fluorescent signal distortion for different optical characteristics of the preparation and of the surrounding medium. A bi-domain representation of electrical activity is combined with finite element solutions to the photon diffusion equation simulating both the excitation and emission processes, along with physically realistic boundary conditions at the epicardium, which allow simulation of different experimental setups. We demonstrate that distortion in the optical signal as a result of fluorescent photon scattering is truly a three-dimensional phenomenon and depends critically upon the geometry of the preparation, the scattering properties of the tissue, the direction of wavefront propagation, and the specifics of the experimental setup. Importantly, we show that in an anatomically accurate model of ventricular geometry and fiber orientation, the morphology of the optical signal does not provide reliable information regarding the intramural direction of wavefront propagation. These findings underscore the potential of the new model in interpreting experimental data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1414570 | PMC |
http://dx.doi.org/10.1529/biophysj.105.076505 | DOI Listing |
J Org Chem
September 2025
School of Chemical and Biopharmaceutical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin D07 EWV4, Ireland.
A series of unsymmetrically substituted BODIPY dyes featuring fused benzo- or naphtho-fragments on one pyrrolic unit were synthesized from the corresponding pyrrolic precursors. The synthetic route was optimized using a modular approach based on the condensation of formylpyrroles with alkylpyrroles, enabling the identification of precursor combinations that minimize byproduct formation and improve preparative yields. The resulting benzo- and naphtho-fused BODIPYs display intense fluorescence in the red region, with emission maxima spanning 590-680 nm and fluorescence quantum yields ranging from 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qing
Silk fibroin (SF)-based flexible electronic/photonic materials have gained great attention in wearable devices and soft sensors. However, it remains challenging to understand the molecular interaction mechanisms and subsequently fabricate SF-based flexible materials that exhibit fluorescence, humidity sensitivity, and conductivity properties. In this study, by incorporating lanthanide europium ion (Eu), the design and fabrication of a flexible, fluorescent, and conductive SF membrane was proposed.
View Article and Find Full Text PDFCancer Res
September 2025
Morgridge Institute for Research, Madison, Wisconsin, United States.
Patient-derived cancer organoids (PDCOs) are a valuable model to recapitulate human disease in culture with important implications for drug development. However, current methods for rapidly and reproducibly assessing PDCOs are limited. Label-free imaging methods are a promising tool to measure organoid level heterogeneity and rapidly screen drug response in PDCOs.
View Article and Find Full Text PDFACS Omega
September 2025
Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul, PO Box 549, 79070-900 Campo Grande, MS, Brazil.
The production of diesel-biodiesel blends (DBB) aims to mitigate the environmental impacts of diesel combustion. However, gaps remain in understanding their molecular properties, particularly fluorescence anisotropy (FA), which reflects molecular rotation and environmental constraints (e.g.
View Article and Find Full Text PDFACS Omega
September 2025
Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw 02-786, Poland.
A dual-cavity lasing platform is reported in which thioflavin T (ThT), a rotor-sensitive molecular probe, is employed to map molecular-crowding effects within starch granules via coupled Fabry-Perot (FP) and whispering gallery mode (WGM) resonances. In this architecture, global standing-wave feedback is furnished by a planar FP cavity, while size-tunable WGMs are supported by ThT-coated starch granules. Granules were sorted into five diameter classes (<20, 20-30, 30-40, 40-60, and >60 μm), and lasing thresholds alongside fluorescence lifetimes were determined.
View Article and Find Full Text PDF