98%
921
2 minutes
20
Human EAT-2 (SH2D1B) and SLAM-associated protein (SAP) (SH2D1A) are single SH2-domain adapters, which bind to specific tyrosine residues in the cytoplasmic tail of six signaling lymphocytic activation molecule (SLAM) (SLAMF1)-related receptors. Here we report that, unlike in humans, the mouse and rat Eat2 genes are duplicated with an identical genomic organization. The coding regions of the mouse Eat2a and Eat2b genes share 91% identity at the nucleotide level and 84% at the protein level; similarly, segments of introns are highly conserved. Whereas expression of mouse Eat2a mRNA was detected in multiple tissues, Eat2b was only detectable in mouse natural killer cells, CD8+ T cells, and ovaries, suggesting a very restricted tissue expression of the latter. Both the EAT-2A and EAT-2B coimmunoprecipitated with mouse SLAM in transfected cells and augmented tyrosine phosphorylation of the cytoplasmic tail of SLAM. Both EAT-2A and EAT-2B bind to the Src-like kinases Fyn, Hck, Lyn, Lck, and Fgr, as determined by a yeast two-hybrid assay. However, unlike SAP, the EAT-2 proteins bind to their kinase domains and not to the SH3 domain of these kinases. Taken together, the data suggest that both EAT-2A and EAT-2B are adapters that recruit Src kinases to SLAM family receptors using a mechanism that is distinct from that of SAP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00251-005-0056-3 | DOI Listing |
J Immunol
November 2010
Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
EWS/FLI1-activated transcript 2 (EAT-2)A and EAT-2B are single SH2-domain proteins, which bind to phosphorylated tyrosines of signaling lymphocyte activation molecule family receptors in murine NK cells. While EAT-2 is a positive regulator in human cells, a negative regulatory role was attributed to the adapter in NK cells derived from EAT-2A-deficient 129Sv mice. To evaluate whether the genetic background or the presence of a selection marker in the mutant mice could influence the regulatory mode of these adapters, we generated EAT-2A-, EAT-2B-, and EAT-2A/B-deficient mice using C57BL/6 embryonic stem cells.
View Article and Find Full Text PDFAdv Immunol
August 2008
Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
The nine SLAM-family genes, SLAMF1-9, a subfamily of the immunoglobulin superfamily, encode differentially expressed cell-surface receptors of hematopoietic cells. Engagement with their ligands, which are predominantly homotypic, leads to distinct signal transduction events, for instance those that occur in the T or NK cell immune synapse. Upon phosphorylation of one or more copies of a unique tyrosine-based signaling motif in their cytoplasmic tails, six of the SLAM receptors recruit the highly specific single SH2-domain adapters SLAM-associated protein (SAP), EAT-2A, and/or EAT-2B.
View Article and Find Full Text PDFImmunogenetics
February 2006
Division of Immunology BIDMC, Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA 02115, USA.
Human EAT-2 (SH2D1B) and SLAM-associated protein (SAP) (SH2D1A) are single SH2-domain adapters, which bind to specific tyrosine residues in the cytoplasmic tail of six signaling lymphocytic activation molecule (SLAM) (SLAMF1)-related receptors. Here we report that, unlike in humans, the mouse and rat Eat2 genes are duplicated with an identical genomic organization. The coding regions of the mouse Eat2a and Eat2b genes share 91% identity at the nucleotide level and 84% at the protein level; similarly, segments of introns are highly conserved.
View Article and Find Full Text PDF