98%
921
2 minutes
20
Although pneumococcus is one of the most frequently encountered opportunistic pathogen in the world, the mechanisms responsible for its infectiveness have not yet been fully understood. In this paper, we have attempted to characterize the effects of pneumococcal transformation on the pathogenesis of the organism. We constructed three transformation-deficient pneumococcal strains, which were designated as Nos. 1d, 2d, and 22d. The construction of these altered strains was achieved via the insertion of the inactivated gene, comE, to strains 1, 2 and 22. We then conducted a comparison between the virulence of the transformation-deficient strains and that of the wild-type strains, via an evaluation of the ability of each strain to adhere to endothelial cells, and also assessed psaA mRNA expression, and the survival of hosts after bacterial challenge. Compared to what was observed with the wild-type strains, our results indicated that the ability of all of the transformation-deficient strains to adhere to the ECV304 cells had been significantly reduced (p < 0.05), the expression of psaA mRNA was reduced significantly (p < 0.05) in strains 2d and 22d, and the median survival time of mice infected with strains 1d and 2d was increased significantly after intraperitoneal bacterial challenge (p < 0.05). The results of our study also clearly indicated that transformation exerts significant effects on the virulence characteristics of S. pneumoniae, although the degree to which this effect is noted appears to depend primarily on the genetic background of the bacteria.
Download full-text PDF |
Source |
---|
Brain Behav
September 2025
Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
Introduction: Anxiety and stress are prevalent mental health issues. Traditional drug treatments often come with unwanted side effects and may not produce the desired results. As an alternative, probiotics are being used as a treatment option due to their lack of specific side effects.
View Article and Find Full Text PDFOpen Res Eur
September 2025
Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark.
Background: Innovative antibiotic discovery strategies are urgently needed to successfully combat infections caused by multi-drug-resistant bacteria.
Methods: We employed a direct screening approach to identify compounds with antimicrobial and antimicrobial helper-drug activity against Gram-positive and Gram-negative bacteria. We used this platform in two different strains of methicillin-resistant (MRSA) and aminoglycoside-resistant strains of to screen for antimicrobials compounds, which potentiate the activity of aminoglycoside antibiotics.
F1000Res
September 2025
Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam.
Background: has been extensively studied for its bioactive components and medicinal properties. This study was carried out to evaluate the fermentation ability of 2.1 yeast to determine suitable fermentation conditions.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110V, Valparaíso, Chile.
Reversible control of spin-dependent thermoelectricity mechanical strain provides a platform for next-generation energy harvesting and thermal logic circuits. Using first-principles and Boltzmann transport calculations, we demonstrate that monolayer NiI undergoes a strain-driven semiconductor-to-half-metal transition, enabled by the selective closure of its spin-down band gap while preserving a robust ferromagnetic ground state. Remarkably, this transition is accompanied by a giant, non-monotonic violation of the Wiedemann-Franz law, with the Lorenz number enhanced up to 7.
View Article and Find Full Text PDFAllergy
September 2025
Institute of Allergology, Charité Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany.
SYN-53, a multi-strain probiotic food supplement, was recently shown to significantly alleviate allergic rhinoconjunctivitis (ARC) and its symptoms. The diversity and dosage of bacterial strains administered via SYN-53 have been proposed as key drivers of its efficacy. The aim of this study was to assess the role of bacterial diversity and dosage by comparing SYN-53 to a low dose variant (SYN-53-LD), a low diversity variant (SYN-4), and a placebo in the management of ARC.
View Article and Find Full Text PDF