Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In Escherichia coli, Deltafur (ferric uptake regulator) mutants are hypersensitive to various oxidative agents, including UVA radiation (400-315 nm). Studies suggest that UVA radiation mediates its biological effects on bacteria via oxidative mechanisms that lead to reactive oxygen species, including the superoxide anion radical (O2.-), hydroxyl radical (HO.), hydrogen peroxide (H2O2) and singlet oxygen (1O2). There is accumulating evidence that Fur may play an important role in the defense against UVA radiation. In addition to regulating almost all genes directly involved in iron acquisition, Fur also regulates the expression of manganese and iron superoxide dismutase (MnSOD, FeSOD), key enzymes in the defense against oxygen toxicity in E. coli. In Deltafur mutants, there is a complete absence of FeSOD. Previous results suggest that the native iron chelating agent, enterobactin, which exists in increased levels in Deltafur mutants, is an endogenous chromophore for UVA, releasing Fe2+ into the cytoplasm to catalyze the production of highly reactive hydroxyl radicals. We now report that the hypersensitivity of Deltafur mutants to UVA irradiation is associated with reduced hydroperoxidase I (HPI) and hydroperoxidase II (HPII) activity, and is associated with a decrease in the transcription of katE and katG genes. The observed decrease in HPII activity in Deltafur mutants is also associated with reduced rpoS gene transcription. This study provides additional evidence that the Fur gene product, in addition to its known regulatory effect on the expression of SOD and iron uptake mechanisms, also regulates HPI and HPII activity levels in E. coli. An H2O2-inducible antioxidant defense system leading to an increase in HPI activity, is unaltered in Deltafur mutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2005.01.003DOI Listing

Publication Analysis

Top Keywords

deltafur mutants
20
hpii activity
16
uva radiation
16
reduced hydroperoxidase
8
hydroperoxidase hpi
8
hpi hpii
8
activity deltafur
8
escherichia coli
8
coli deltafur
8
evidence fur
8

Similar Publications

Staphylococcus aureus has evolved mechanisms to cope with low iron (Fe) availability in host tissues. Staphylococcus aureus uses the ferric uptake transcriptional regulator (Fur) to sense titers of cytosolic Fe. Upon Fe depletion, apo-Fur relieves transcriptional repression of genes utilized for Fe uptake.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on a Gram-negative marine bacterium that causes vibriosis in fish, highlighting the critical role of iron acquisition in its virulence.
  • Researchers found that the global iron uptake regulator Fur significantly influences various metabolic pathways and virulence factors in the bacterium, with its absence leading to abnormal gene expression and impaired growth under iron-rich conditions.
  • The study enhances understanding of how Fur regulates iron acquisition and virulence, emphasizing its importance in the bacterium's pathogenicity and the broader implications for managing vibriosis in economically important fish species.
View Article and Find Full Text PDF

has evolved mechanisms to cope with low iron (Fe) availability in host tissues. uses the ferric uptake transcriptional regulator (Fur) to sense titers of cytosolic Fe. Upon Fe depletion, apo-Fur relieves transcriptional repression of genes utilized for Fe uptake.

View Article and Find Full Text PDF

Δfur mutant as a potential live attenuated vaccine (LAV) candidate protects American eels (Anguilla rostrata) from Vibrio harveyi infection.

Microb Pathog

April 2024

Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China. Electronic address:

The eel farming industry is highly susceptible to Vibriosis. Although various types of vaccines against Vibriosis have been investigated, there is limited research on decreasing the virulence of Vibrions through gene knockout and utilizing it as live attenuated vaccines (LAV). In this study, we aim to develop a LAV candidate against Vibrio harveyi infection in American eels (Anguilla rostrata) using a ferric uptake regulator (fur) gene mutant strain of V.

View Article and Find Full Text PDF

Vibrio harveyi is commonly found in salt and brackish water and is recognized as a serious bacterial pathogen in aquaculture worldwide. In this study, we cloned the ferric uptake regulator (fur) gene from V. harveyi wild-type strain HA_1, which was isolated from diseased American eels (Anguilla rostrata) and has a length of 450 bp, encoding 149 amino acids.

View Article and Find Full Text PDF