98%
921
2 minutes
20
Alterations in the cellular architecture, adhesion, and/or loss of glomerular podocytes are causal factors in the development of proteinuria and the progression to end-stage renal failure. With the use of an inducible podocyte differentiation system, it was found that the cellular levels of PINCH-1, integrin linked kinase (ILK), and alpha-parvin, cytoplasmic components of cell-extracellular matrix adhesions, were significantly increased during podocyte differentiation. Concomitantly, an increased amount of the PINCH-1-ILK-alpha-parvin complex was detected in the differentiated, foot process-containing podocytes. Overexpression of the PINCH-1-binding ankyrin repeat domain of ILK but not that of a PINCH-1-binding defective mutant form of the ankyrin domain effectively inhibited the formation of the PINCH-1-ILK-alpha-parvin complex. Disruption of the PINCH-1-ILK-alpha-parvin complex significantly reduced the podocyte-matrix adhesion and foot process formation. Furthermore, a marked increase of apoptosis in the podocytes in which the assembly of the PINCH-1-ILK-alpha-parvin complex was compromised was detected. Inhibition of ILK with a small compound inhibitor also altered podocyte cytoskeleton and increased apoptosis. Finally, it is shown that alpha-parvin is phosphorylated in podocytes. Mutations at the alpha-parvin N-terminal proline-directed serine phosphorylation sites reduced its complex formation with ILK and resulted in defects in podocyte adhesion, architecture, and survival. These results provide important evidence for a crucial role of the PINCH-1-ILK-alpha-parvin complex in the control of podocyte adhesion, morphology, and survival.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1681/ASN.2004121112 | DOI Listing |
BMB Rep
April 2013
Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
Nephrin, a structural molecule, is also a signaling molecule after phosphorylation. Inhibition of nephrin phosphorylation is correlated with podocyte injury. The PINCH-1-ILK-α-parvin (PIP) complex plays a crucial role in cell adhesion and cytoskeleton formation.
View Article and Find Full Text PDFPLoS One
October 2011
Department of Stem Cell and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America.
Myocardial remodeling is a major contributor in the development of heart failure (HF) after myocardial infarction (MI). Integrin-linked kinase (ILK), LIM-only adaptor PINCH-1, and α-parvin are essential components of focal adhesions (FAs), which are highly expressed in the heart. ILK binds tightly to PINCH-1 and α-parvin, which regulates FA assembly and promotes cell survival via the activation of the kinase Akt.
View Article and Find Full Text PDFExp Mol Med
August 2007
Department of Pharmacology, Wonkwang University School of Medicine, Iksan 570-749, Korea.
TGF-beta1-induced glomerular mesangial cell (GMC) injury is a prominent characteristic of renal pathology in several kidney diseases, and a ternary protein complex consisting of PINCH-1, integrin-linked kinase (ILK) and alpha-parvin plays a pivotal role in the regulation of cell behavior such as cell proliferation and hypertrophy. We report here that PINCH-1-ILK-alpha-parvin (PIP) complex regulates the TGF-beta1-induced cell proliferation and hypertrophy in cultured rat GMCs. When GMCs were treated with TGF-beta1 for 1, 2 and 3 days, the PIP complex formation was up-regulated after 1 day, but it was down-regulated on day 2.
View Article and Find Full Text PDFJ Am Soc Nephrol
July 2005
707B Scaife Hall, Department of Pathology, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
Alterations in the cellular architecture, adhesion, and/or loss of glomerular podocytes are causal factors in the development of proteinuria and the progression to end-stage renal failure. With the use of an inducible podocyte differentiation system, it was found that the cellular levels of PINCH-1, integrin linked kinase (ILK), and alpha-parvin, cytoplasmic components of cell-extracellular matrix adhesions, were significantly increased during podocyte differentiation. Concomitantly, an increased amount of the PINCH-1-ILK-alpha-parvin complex was detected in the differentiated, foot process-containing podocytes.
View Article and Find Full Text PDF