98%
921
2 minutes
20
This study investigated the expression of deiodinases of thyroid hormones in the rat brain after transient occlusion of the middle cerebral artery. The activity of type 2 deiodinase (D2), which catalyzes the deiodination of thyroxine into the more active thyroid hormone 3,5,3'-triiodothyronine, was strongly increased by cerebral ischemia at 6 and 24 hours in the striatum and at 24 hours in the cerebral cortex. The activity of type 3 deiodinase, which catalyzes the inactivation of thyroid hormones, was not affected by ischemia. In situ hybridization showed, as soon as 6 hours, an upregulation of the expression of D2 mRNA in the ipsilateral striatum, which disappeared at 24 hours. In the ipsilateral cortex, the induction of D2 mRNA started at 6 hours, was increased at 24 hours and finally declined at 72 hours. These results were confirmed by reverse transcription-PCR for D2 mRNA in the striatum and cerebral cortex. The upregulation of D2 mRNA after ischemia was mainly localized in astrocytic cell bodies. These results show that D2 is rapidly induced in astrocytes after ischemic stroke. Future work will include the exploration of the role of the upregulation of this enzyme, responsible for local 3,5,3'-triiodothyronine production as a neuroprotective mechanism in the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.jcbfm.9600041 | DOI Listing |
Chem Biodivers
September 2025
School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, P. R. China.
20(R)-ginsenoside Rg3 can reduce the effects of oxidative stress and cell death in cerebral ischemia‒reperfusion injury (CIRI). Neuroinflammation is crucial post-CIRI, but how 20(R)-Rg3 affects ischemia‒reperfusion-induced neuroinflammation is unclear. To study 20(R)-Rg3's effects on neuroinflammation and neuronal preservation in stroke models and explore toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa B (TLR4/MyD88/NF-κB) pathway mechanisms.
View Article and Find Full Text PDFNeurocrit Care
September 2025
Department of Neurology and Neurosurgery, Division of Neurocritical Care, Emory University School of Medicine, Atlanta, GA, USA.
Naunyn Schmiedebergs Arch Pharmacol
September 2025
Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Daqing, China.
Clin Neuroradiol
September 2025
Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
Background: Pediatric acute ischemic stroke is a rare yet severe condition with multifactorial etiology, often associated with vasculopathies. Endovascular intervention in children with focal cerebral arteriopathy is seldom reported.
Purpose: Our aim was to report feasibility of intracranial rescue stenting for the management of pediatric focal cerebral arteriopathy with flow-limiting stenosis.
Neurol Res
September 2025
Department of Human Anatomy, Wannan Medical College, Wuhu, China.
Background: Ischemic stroke can damage the cerebral white matter, resulting in myelin loss and neurological deficits. Moreover, microglial activation plays an important role in ischemic stroke; therefore, inhibiting microglial activation has become an effective therapeutic target for ischemic stroke.
Objective: This study aimed to investigate the effects of electroacupuncture (EA) on microglial activation and polarization, and the role of oligodendrocyte genesis in myelin reformation after ischemic stroke.