98%
921
2 minutes
20
By using the matured embryos of Japonica rice variety Zhonghua No. 11 as explants, rice transformation was performed by Agrobacterium-mediated co-cultivation method, resulting in 1489 independent transgenic rice plants that carry a T-DNA insertion. Genomic DNA gel-blot and PCR analyses showed that 69.8% of the total lines contain the inserted T-DNA. The flanking sequence of T-DNA in transgenic rice plants was analyzed using Tail-PCR. In addition, we have evaluated 1066 T1 transgenic lines on heading days, plant height and panicles per hill, and found different types of mutants from a number of lines.
Download full-text PDF |
Source |
---|
Ann Bot
September 2025
The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, China 264025.
Background And Aims: Cell wall invertases have multiple roles in plant growth and development, yet their biological functions in seed oil production are still not understood.
Methods: In the present study, the Oryza sativa (rice) cell wall invertase gene OsGIF1 (GRAIN INCOMPLETE FILLING 1) was ectopically expressed in Glycine max (Soybean) and its functions in grain yield and seed nutrition was investigated.
Key Results: We found that constitutive expression of OsGIF1 significantly improved biomass production, grain yield and seed nutrition in transgenic plants.
Plant Cell Environ
September 2025
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry
CRISPR ribonucleoprotein (RNP)-mediated genome editing offers a transgene-free platform for precise genetic modification in diverse herbaceous and tree species, including rice, wheat, apple, poplar, oil palm, rubber tree and grapevine. However, its application in woody plants faces distinct challenges, notably inefficient delivery and regeneration difficulties, particularly in species such as bamboo. While some of these issues also occur in herbaceous plants, they are often significantly more complex in woody species due to factors such as intricate cell wall architecture, widespread recalcitrant genotypes and inherent limitations of current delivery platforms.
View Article and Find Full Text PDF3 Biotech
October 2025
ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India.
Just as Gregor Mendel's laws of inheritance laid the foundation for modern genetics, the emergence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas systems has catalyzed a new era in precision genome engineering. CRISPR/Cas has revolutionized rice ( L.) breeding by enabling precise, transgene-free edits to improve yield, nutrition, and stress tolerance.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
College of Plant Protection, Hunan Agricultural University, Changsha 410128, China. Electronic address:
Shortawn foxtail (Alopecurus aequalis Sobol.) is a challenging weed species to manage in wheat production systems globally. In prior research, we identified a field population of A.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning 110866, PR China. Electronic address:
As the weed Echinochloa phyllopogon has rapidly developed multi- and cross-resistance to several herbicides, we aimed to determine the mechanism underlying penoxsulam resistance in weeds. There was no target mutation in the tested population, and P450 enzyme activity was significantly higher in the penoxsulam-treated resistant population, confirming that non-target-site resistance was dominant. The antioxidant enzyme activity of the resistant population was higher than that of the sensitive population following the application of the penoxsulam and cleared HO faster.
View Article and Find Full Text PDF