98%
921
2 minutes
20
Titanium(IV) citrate complexes (NH(4))(2)[Ti(H(2)cit)(3)].3H(2)O (1), (NH(4))(5)[Fe(H(2)O)(6)][Ti(H(2)cit)(3)(Hcit)(3)Ti].3H(2)O (2), Ba(2)[Ti(H(2)cit)(Hcit)(2)].8H(2)O (3), and Ba(3)(NH(4))(7)[Ti(cit)(3)H(3)(cit)(3)Ti].15H(2)O (4) (H(4)cit = citric acid) were isolated in pure form from the solutions of titanium(IV) citrate with various countercations. The isolated complexes were characterized by elemental analyses, IR spectra, and (1)H NMR and (13)C NMR spectra. The formation of titanium(IV) citrate complexes depends mainly on the pH of the solutions, that is, pH 1.0-2.8 for the formation of ammonium titanium(IV) citrate 1, pH 2.5-3.5 for ammonium iron titanium(IV) citrate 2, pH 2.8-4.0 for dibarium titanium(IV) citrate 3, and pH 5.0-6.0 for ammonium barium titanium(IV) citrate 4. X-ray structural analyses revealed that complexes 2-4 featured three different protonated forms of bidentate citrate anions that chelate to the titanium(IV) atom through their negatively charged alpha-alkoxyl and alpha-carboxyl oxygen atoms. This is consistent with the large downfield shifts of the (13)C NMR spectra for the carbon atoms bearing the alpha-alkoxyl and alpha-carboxyl groups. The typical coordination modes of the barium atoms in complexes 3 and 4 are six-coordinated, with three alpha-alkoxyl groups and three beta-carboxyl groups of citrate ions. The strong hydrogen bonding between the beta-carboxylic acid and the beta-carboxyl groups [2.634(8) A for complex 2, 2.464(7) A for complex 3, and 2.467(7) A for complex 4] may be the key factor for the stabilization of the citrate complexes. The decomposition of complex 3 results in the formation of a pure dibarium titanate phase and 4 for the mixed phases of dibarium titanate and barium titanate at 1000 degrees C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic0496018 | DOI Listing |
Int J Biol Macromol
October 2024
Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
Inorg Chem
December 2023
Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States.
The solution chemistry of the hydrolytic, early-transition-metal ions Ti and Sc represents a coordination chemistry challenge with important real-world implications, specifically in the context of Ti/Sc and Ti/Sc radiochemical separations. Unclear speciation of the solid and solution phases and tertiary mixtures of mineral acid, organic chelators, and solid supports are common confounds, necessitating tedious screening of multiple variables. Herein we describe how thermodynamic speciation data in solution informs the design of new solid-phase chelation approaches enabling separations of Ti and Sc.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
May 2021
Laboratory of Mass Transfer, Federal University of Santa Catarina (UFSC), PO Box 476, Florianópolis, SC, 88040-900, Brazil.
This paper presents the synthesis of a hybrid material through the use of natural pozzolan and titanium(IV) isopropoxide using the sol-gel method and its application in the photocatalytic hexavalent chromium reduction. The characterization data indicated a mesoporous material possessing a surface area of 271.7 m g.
View Article and Find Full Text PDFBeilstein J Org Chem
July 2017
Institute of Inorganic Chemistry, Technische Universität Dresden, Dresden, Germany.
A solvent-free synthesis of hierarchical porous carbons is conducted by a facile and fast mechanochemical reaction in a ball mill. By means of a mechanochemical ball-milling approach, we obtained titanium(IV) citrate-based polymers, which have been processed via high temperature chlorine treatment to hierarchical porous carbons with a high specific surface area of up to 1814 m g and well-defined pore structures. The carbons are applied as electrode materials in electric double-layer capacitors showing high specific capacitances with 98 F g in organic and 138 F g in an ionic liquid electrolyte as well as good rate capabilities, maintaining 87% of the initial capacitance with 1 M TEA-BF in acetonitrile (ACN) and 81% at 10 A g in EMIM-BF.
View Article and Find Full Text PDFEnviron Technol
November 2016
a Institut für Technische Chemie, Leibniz Universität Hannover, Hannover , Germany.
Highly crystalline anatase TiO2 nanoparticles with high BET surface area have been synthesized by thermal hydrolysis of titanium(IV) bis(ammoniumlactato) dihydroxide aqueous solutions. The photocatalytic H2 production from aqueous citric acid (CA) solutions over Pt-loaded TiO2 has been investigated under different experimental conditions, that is, different CA concentration, temperature, light intensity, and pH of Pt/TiO2 suspension. For comparison, the photocatalytic dehydrogenation of triethanolamine (TEA) has also been investigated.
View Article and Find Full Text PDF