98%
921
2 minutes
20
Only three recognition motifs, GFOGER, GLOGER, and GASGER, all present in type I collagen, have been identified to date for collagen-binding integrins, such as alpha(2)beta(1). Sequence alignment was used to investigate the occurrence of related motifs in other human fibrillar collagens, and located a conserved array of novel GER motifs within their triple helical domains. We compared the integrin binding properties of synthetic triple helical peptides containing examples of such sequences (GLSGER, GMOGER, GAOGER, and GQRGER) or the previously identified motifs. Recombinant inserted (I) domains of integrin subunits alpha(1), alpha(2) and alpha(11) all bound poorly to all motifs other than GFOGER and GLOGER. Similarly, alpha(2)beta(1) -containing resting platelets adhered well only to GFOGER and GLOGER, while ADP-activated platelets, HT1080 cells and two active alpha(2)I domain mutants (E318W, locked open) bound all motifs well, indicating that affinity modulation determines the sequence selectivity of integrins. GxO/SGER peptides inhibited platelet adhesion to collagen monomers with order of potency F >/= L >/= M > A. These results establish GFOGER as a high affinity sequence, which can interact with the alpha(2)I domain in the absence of activation and suggest that integrin reactivity of collagens may be predicted from their GER content.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M404685200 | DOI Listing |
Curr Opin Biomed Eng
June 2018
Department of Mechanical Engineering Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
This article is a review of current research on the mechanism of regeneration of skin and peripheral nerves based on use of collagen scaffolds, particularly the dermis regeneration template (DRT), which is widely used clinically. DRT modifies the normal wound healing process, converting it from wound closure by contraction and scar formation to closure by regeneration. DRT achieves this modification by blocking wound contraction, which spontaneously leads to cancellation of scar formation, a process secondary to contraction.
View Article and Find Full Text PDFWound Repair Regen
April 2017
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
We review the mounting evidence that regeneration is induced in wounds in skin and peripheral nerves by a simple modification of the wound healing process. Here, the process of induced regeneration is compared to the other two well-known processes by which wounds close, i.e.
View Article and Find Full Text PDFJ Biol Chem
July 2012
Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom.
Integrins are well characterized cell surface receptors for extracellular matrix proteins. Mapping integrin-binding sites within the fibrillar collagens identified GFOGER as a high affinity site recognized by α2β1, but with lower affinity for α1β1. Here, to identify specific ligands for α1β1, we examined binding of the recombinant human α1 I domain, the rat pheochromocytoma cell line (PC12), and the rat glioma Rugli cell line to our collagen Toolkit II and III peptides using solid-phase and real-time label-free adhesion assays.
View Article and Find Full Text PDFJ Biol Chem
September 2005
The Center for Extracellular Matrix Biology, Texas A&M University Health Science Center, Institute of Bioscience and Technology, Houston, 77030, USA.
Previously identified high affinity integrin-binding motifs in collagens, GFOGER and GLOGER, are not present in type III collagen. Here, we first characterized the binding of recombinant I domains from integrins alpha(1) and alpha(2) (alpha(1)I and alpha(2)I) to fibrillar collagen types I-III and showed that each I domain bound to the three types of collagens with similar affinities. Using rotary shadowing followed by electron microscopy, we identified a high affinity binding region in human type III collagen recognized by alpha(1)I and alpha(2)I.
View Article and Find Full Text PDFJ Biol Chem
November 2004
Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, United Kingdom.
Only three recognition motifs, GFOGER, GLOGER, and GASGER, all present in type I collagen, have been identified to date for collagen-binding integrins, such as alpha(2)beta(1). Sequence alignment was used to investigate the occurrence of related motifs in other human fibrillar collagens, and located a conserved array of novel GER motifs within their triple helical domains. We compared the integrin binding properties of synthetic triple helical peptides containing examples of such sequences (GLSGER, GMOGER, GAOGER, and GQRGER) or the previously identified motifs.
View Article and Find Full Text PDF