98%
921
2 minutes
20
A Gla domain-mutated protein C variant, QGNSEDY, modified at positions 10-12, 23, 32-33, and 44, having enhanced affinity for negatively charged phospholipid and increased anticoagulant potential, was used to elucidate the importance of the interaction between the Gla domain and the phospholipid for the ability of activated protein C (APC) to inactivate factor Va (FVa). FVa degradation by wild type (WT)-APC and QGNSEDY-APC yielded similar fragments on Western blotting; QGNSEDY-APC was, however, considerably more efficient. The kinetic parameters for individual APC-mediated cleavages in FVa, i.e. at Arg-306 and Arg-506, were investigated at high and low phospholipid concentrations in the presence and absence of protein S. FVa variants 306Q679Q and 506Q679Q, which can only be cleaved at Arg-506 and Arg-306, respectively, were used. In the absence of protein S, QGNSEDY-APC was 17.8- and 4-fold more efficient than WT-APC in cleaving at Arg-306 and Arg-506, respectively, at high phospholipid. Similar values were obtained at low phospholipid. In the presence of protein S, QGNSEDYAPC was 6.8- and 3.2-fold more active than WT-APC in cleaving at Arg-306 and Arg-506, respectively, at high phospholipid. At low phospholipid, the corresponding values were 14- and 6.5-fold. In conclusion, the modification of the Gla domain in QGNSEDY-APC yielded increased rates of cleavage at both sites in FVa, the increase being particularly pronounced for the Arg-306 site in the absence of protein S. The results obtained with QGNSEDY-APC provide insights into the importance of the APC-phospholipid interaction for the APC-mediated cleavages at Arg-306 and Arg-506 in FVa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M407366200 | DOI Listing |
J Biol Chem
November 2022
Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. Electronic
Activated protein C (APC) is an important anticoagulant protein that regulates thrombin generation through inactivation of factor V (FV) and activated factor V (FVa). The rate of APC inactivation of FV is slower compared to FVa, although proteolysis occurs at the same sites (Arg, Arg, and Arg). The molecular basis for FV resistance to APC is unknown.
View Article and Find Full Text PDFJ Biol Chem
July 2010
Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200MD Maastricht, The Netherlands.
Activated protein C (APC) down-regulates thrombin formation through proteolytic inactivation of factor Va (FVa) by cleavage at Arg(506) and Arg(306) and of factor VIIIa (FVIIIa) by cleavage at Arg(336) and Arg(562). To study substrate recognition by APC, active site-mutated APC (APC(S360A)) was used, which lacks proteolytic activity but exhibits anticoagulant activity. Experiments in model systems and in plasma show that APC(S360A), and not its zymogen protein C(S360A), expresses anticoagulant activities by competing with activated coagulation factors X and IX for binding to FVa and FVIIIa, respectively.
View Article and Find Full Text PDFThromb Haemost
January 2009
Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550, North Torrey Pines Road, MEM180, La Jolla, CA, 92037, USA.
The hypothesis that prothrombin (FII) protects coagulation factor Va (FVa) from proteolytic inactivation by activated protein C (APC) was tested using purified proteins. FII dose-dependently protected FVa from APC proteolysis under conditions where competition of proteins for binding to negatively-charged phospholipid surface was not relevant (i.e.
View Article and Find Full Text PDFJ Biol Chem
September 2007
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037. Electronic address:
Activated protein C (APC) inactivates factor Va (fVa) by proteolytically cleaving fVa heavy chain at Arg(506), Arg(306), and Arg(679). Factor Xa (fXa) protects fVa from inactivation by APC. To test the hypothesis that fXa and APC share overlapping fVa binding sites, 15 amino acid-overlapping peptides representing the heavy chain (residues 1-709) of fVa were screened for inhibition of fVa inactivation by APC.
View Article and Find Full Text PDFJ Biol Chem
July 2007
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
Prothrombin is proteolytically activated by the prothrombinase complex comprising the serine protease Factor (F) Xa complexed with its cofactor, FVa. Based on inhibition of the prothrombinase complex by synthetic peptides, FVa residues 493-506 were proposed as a FXa binding site. FVa is homologous to FVIIIa, the cofactor for the FIXa protease, in the FX-activating complex, and FVIIIa residues 555-561 (homologous to FVa residues 499-506) are recognized as a FIXa binding sequence.
View Article and Find Full Text PDF