Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The objectives of this work were to develop a robust procedure for assessing powder flow using a commercial avalanche testing instrument and to define the limits of its performance. To achieve this a series of powdered pharmaceutical excipients with a wide range of flow properties was characterized using such an instrument (Aeroflow, TSI Inc., St. Paul, MN, USA). The experimental conditions (e.g., sample size, rotation speed) were rationally selected and systematically evaluated so that an optimal standard-operating-procedure could be identified. To evaluate the inherent variability of the proposed methodology samples were tested at multiple sites, using different instruments and operators. The ranking of the flow properties of the powders obtained was also compared with that obtained using a conventional shear-cell test. As a result of these experiments a quick, simple, and rugged procedure for determining the flow properties of pharmaceutical powders in their dilated state was developed. This procedure gave comparable results when performed at four different testing sites and was able to reproducibly rank the flow properties of a series of common pharmaceutical excipient powders. The limits of the test method to discriminate between different powder samples were determined, and a positive correlation with the results of a benchmark method (the simplified shear cell) was obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2004.02.035DOI Listing

Publication Analysis

Top Keywords

flow properties
16
robust procedure
8
procedure assessing
8
assessing powder
8
powder flow
8
flow commercial
8
commercial avalanche
8
avalanche testing
8
testing instrument
8
flow
6

Similar Publications

Strain-induced half-metallicity and giant Wiedemann-Franz violation in monolayer NiI.

Phys Chem Chem Phys

September 2025

Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110V, Valparaíso, Chile.

Reversible control of spin-dependent thermoelectricity mechanical strain provides a platform for next-generation energy harvesting and thermal logic circuits. Using first-principles and Boltzmann transport calculations, we demonstrate that monolayer NiI undergoes a strain-driven semiconductor-to-half-metal transition, enabled by the selective closure of its spin-down band gap while preserving a robust ferromagnetic ground state. Remarkably, this transition is accompanied by a giant, non-monotonic violation of the Wiedemann-Franz law, with the Lorenz number enhanced up to 7.

View Article and Find Full Text PDF

Biofilms-microbial communities encased in a self-produced extracellular matrix-pose a significant challenge in clinical settings due to their association with chronic infections and antibiotic resistance. Their formation in the human body is governed by a complex interplay of biological and environmental factors, including the biochemical composition of bodily fluids, fluid dynamics, and cell-cell and cell-surface interactions. Improving therapeutic strategies requires a deeper understanding of how host-specific conditions shape biofilm development.

View Article and Find Full Text PDF

Microswimmer locomotion in non-Newtonian fluids is crucial for biological processes, including infection, fertilization and biofilm formation. The behaviour of microswimmers in these media is an area with many conflicting results, with swimmers displaying varying responses depending on their morphology, actuation and the complex properties of the surrounding fluid. Using a hybrid computational approach, we numerically investigate the effect of shear-thinning rheology and viscoelasticity on a simple conceptual microswimmer consisting of three linked spheres.

View Article and Find Full Text PDF

A cross-scale analysis for the determinants of bonding dynamics on the distributions of rolling velocities of cells in microvessels.

Biophys J

September 2025

Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

The interplay between subcellular adhesion dynamics and cellular-scale deformations under shear flow drives key physiological and pathological processes. While both bond kinetics and fluid-cell interactions have been extensively studied in rolling adhesion, how bond characteristics quantitatively determine cellular velocity distributions remains unclear. In this study, we systematically investigate how force-free bond kinetics and intrinsic mechanical properties govern rolling adhesion dynamics, using macroscopic velocity distributions as a reference.

View Article and Find Full Text PDF

Introduction: To evaluate how stepwise enlargement in the mesial root canals of mandibular first molars affect shaping outcomes and irrigant dynamics.

Methods: The shaping ability and irrigant flow patterns in mesial canals of mandibular first molars enlarged with ProTaper Next instruments (25/.06v, 30/.

View Article and Find Full Text PDF