A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis.

Proc Natl Acad Sci U S A

Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1312, USA.

Published: September 2004


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Previously, we described the AtGRF [Arabidopsis thaliana growth-regulating factor (GRF)] gene family, which encodes putative transcription factors that play a regulatory role in growth and development of leaves and cotyledons. We demonstrate here that the C-terminal region of GRF proteins has transactivation activity. In search of partner proteins for GRF1, we identified another gene family, GRF-interacting factor (GIF), which comprises three members. Sequence and molecular analysis showed that GIF1 is a functional homolog of the human SYT transcription coactivator. We found that the N-terminal region of GIF1 protein was involved in the interaction with GRF1. To understand the biological function of GIF1, we isolated a loss-of-function mutant of GIF1 and prepared transgenic plants subject to GIF1-specific RNA interference. Like grf mutants, the gif1 mutant and transgenic plants developed narrower leaves and petals than did wild-type plants, and combinations of gif1 and grf mutations showed a cooperative effect. The narrow leaf phenotype of gif1, as well as that of the grf triple mutant, was caused by a reduction in cell numbers along the leaf-width axis. We propose that GRF1 and GIF1 act as transcription activator and coactivator, respectively, and that they are part of a complex involved in regulating the growth and shape of leaves and petals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC516574PMC
http://dx.doi.org/10.1073/pnas.0405450101DOI Listing

Publication Analysis

Top Keywords

involved regulating
8
gene family
8
gif1
8
transgenic plants
8
leaves petals
8
transcriptional coactivator
4
coactivator atgif1
4
atgif1 involved
4
regulating leaf
4
leaf growth
4

Similar Publications

The GPR120 agonist TUG-891 mitigates ischemic brain injury by attenuating endoplasmic reticulum stress and apoptosis via the PI3K/AKT signaling pathway.

Neurotherapeutics

September 2025

Department of Neurology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, 100191, China; Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking Universit

Extensive research has confirmed that omega-3 fatty acids provide cardiovascular protection primarily by activating the G protein-coupled receptor 120 (GPR120) signaling pathway. However, natural activators of this receptor often lack sufficient strength and precision. TUG-891, a recently synthesized selective GPR120 activator, has displayed significant therapeutic potential in multiple disease.

View Article and Find Full Text PDF

The fraction that the elderly represent in the world's population is growing rapidly; numerous alterations that impact all organs and systems, including the immune system, are related to aging. A complex process common in the elderly, known as immunosenescence, is characterized by a decreased ability to respond to vaccination as well as an increased risk of bacterial and viral infections, autoimmune, cardiovascular and neurodegenerative diseases. These processes are associated with alterations in the innate and adaptive immune system and lead to a condition of chronic low-grade inflammation, referred to as inflammaging.

View Article and Find Full Text PDF

The fall armyworm (Spodoptera frugiperda, FAW) has developed varying degrees of resistance to chlorantraniliprole (CAP). Apoptosis serves as a critical defense mechanism against pesticide stress in insects. Here, we identified a juvenile hormone (JH)-mediated apoptotic pathway through RNA-seq, revealing nine JH-induced apoptosis-related genes (four positively correlated and five negatively correlated).

View Article and Find Full Text PDF

Knockdown of Clavesin family genes NlClvs1l, NlClvs1t, and NlClvs2l in Nilaparvata lugens reveals their potential as novel targets for pest control strategies.

Pestic Biochem Physiol

November 2025

Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, School of Life Sciences, China Jiliang University, Hangzhou 310018, China. Electronic a

The brown planthopper (BPH) Nilaparvata lugens is one of the most destructive pests of rice, and its management has primarily relied on chemical insecticides. Currently, the chemical management of BPH is facing challenges due to the development of pesticide resistance. RNA interference (RNAi) provides attractive alternative to chemical insecticides, provided that suitable target genes are identified.

View Article and Find Full Text PDF

Microbial consortia, involving two or more microorganisms, have been explored for pest management purposes, despite concerns regarding competitive exclusion among entomopathogenic fungi that may undermine synergistic effects. However, the precise molecular mechanisms governing entomopathogen competition in vivo remain inadequately elucidated. Here, we investigate competitive exclusion dynamics between two prominent entomopathogens, Metarhizium robertsii and Beauveria bassiana.

View Article and Find Full Text PDF