Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The plant hormone ethylene plays a role in various growth related processes. In this detailed study of the vegetative growth of Arabidopsis, Nicotiana tabacum, and Petunia x hybrida plants, we show that ethylene insensitivity does not result in an increased total leaf area or relative growth rate (RGR) under optimal growth conditions. When grown in semiclosed containers, leaf area of ethylene-insensitive plants was larger compared to the wild type. This effect was caused by a buildup of ethylene inside these containers, which inhibited the growth of wild-type plants. Ethylene-insensitive Arabidopsis and N. tabacum plants had a lower biomass, which was mainly the result of a smaller seed mass. RGR of vegetative plants was not affected by ethylene insensitivity, but the underlying components of RGR differed; specific leaf area (leaf area per unit leaf mass) was higher, and unit leaf rate (growth rate per unit leaf area) was lower. The latter was a result of a slower rate of photosynthesis per unit leaf area in the ethylene-insensitive plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC419903PMC
http://dx.doi.org/10.1104/pp.103.034389DOI Listing

Publication Analysis

Top Keywords

leaf area
28
unit leaf
16
ethylene insensitivity
12
growth rate
12
leaf
9
area relative
8
relative growth
8
arabidopsis nicotiana
8
nicotiana tabacum
8
tabacum petunia
8

Similar Publications

Urban green areas are vital yet underexplored reservoirs of microbial diversity in cities. This study examines myxomycete communities in Zijin Mountain National Forest Park, a subtropical urban forest in Nanjing, China, across four seasons and multiple forest types. Combining field collections and moist chamber cultures, we documented 60 species from 906 occurrence records.

View Article and Find Full Text PDF

In response to the challenges of nutrient limitations and low efficiency in synthesizing artificial humic acid (AHA) during the resource utilization of agricultural wastes, this study innovatively developed a process that integrates biogas slurry (BS) impregnation pretreatment with hydrothermal humification (HTH). Using steam-exploded corn straw (SES) as the raw material, the impregnation parameters were optimized (40 °C, liquid-to-solid ratio of 15:1, 18 h, 3 cycles), achieving an AHA yield of 40.61 %, which was over 15 % higher than that of the untreated group.

View Article and Find Full Text PDF

Cerium (Ce), the most abundant of the rare Earth elements (REEs), is increasingly recognized as an environmental contaminant due to its growing applications in various industrial and agricultural sectors. This study investigates the physiological, biochemical, and molecular responses of Brassica rapa L. plants to varying concentrations of Ce exposure to elucidate its effects on plant growth, metabolism, and stress responses.

View Article and Find Full Text PDF

This study presents the first attempt on plant biomonitoring of the polycyclic aromatic hydrocarbons (PAHs) pollution in East Kolkata Wetland (EKW), a Ramsar site in India, using Alternanthera ficoidea (L.). A polluted site, Captain Bheri (CB) and a control area, Kansabati River Basin (KRB) are chosen to compare the severity of the PAHs pollution of the wetland by examining wetland sediment and wetland plant parts (leaf, root, stem, rhizobium).

View Article and Find Full Text PDF

Acclimation of mango (Mangifera indica cv. Calypso) to canopy light gradients - scaling from leaf to canopy.

Tree Physiol

September 2025

College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, QLD, Australia.

Mango (Mangifera indica), a leading tropical fruit crop, is a prime candidate for intensification through modern orchard-management techniques, including canopy manipulation to improve light interception. This study investigated how leaf-level acclimation to light gradients within the canopy of a high-yield, dwarfing mango cultivar (Calypso™) could be used to examine integrated canopy-scale responses. We quantified foliar morphological, biochemical, and physiological traits across a range of canopy positions using this information to model canopy-scale productivity within digital-twin representations of mango under both conventional (i.

View Article and Find Full Text PDF