98%
921
2 minutes
20
The inner plexiform layer (IPL) of the vertebrate retina comprises functionally specialized sublaminae, representing connections between bipolar, amacrine and ganglion cells with distinct visual functions. Developmental mechanisms that target neurites to the correct synaptic sublaminae are largely unknown. Using transgenic zebrafish expressing GFP in subsets of amacrine cells, we imaged IPL formation and sublamination in vivo and asked whether the major postsynaptic cells in this circuit, the ganglion cells, organize the presynaptic inputs. We found that in the lak/ath5 mutant retina, where ganglion cells are never born, formation of the IPL is delayed, with initial neurite outgrowth ectopically located and grossly disorganized. Over time, the majority of early neurite projection errors are corrected, and major ON and OFF sublaminae do form. However, focal regions of disarray persist where sublaminae do not form properly. Bipolar axons, which arrive later, are targeted correctly, except at places where amacrine stratification is disrupted. The lak mutant phenotype reveals that ganglion cells have a transient role organizing the earliest amacrine projections to the IPL. However, it also suggests that amacrine cells interact with each other during IPL formation; these interactions alone appear sufficient to form the IPL. Furthermore, our results suggest that amacrines may guide IPL sublamination by providing stratification cues for other cell types.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.01040 | DOI Listing |
BMC Ophthalmol
September 2025
Department of Ophthalmology, Institute of Medicine, Tribhuvan University, B.P Koirala Lions Centre For Ophthalmic Studies, Kathmandu, Nepal.
Background: To evaluate the ganglion cell complex thickness in patients taking oral hydroxychloroquine.
Methods: In this hospital-based, cross-sectional, non-interventional, comparative study, 87 eyes of 87 patients taking hydroxychloroquine were recruited. All the patients underwent complete ophthalmological evaluation along with dilated fundus examination.
J Neurosci
September 2025
Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
The purpose of this study was to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, neuroprotection, and reprogramming of Müller glia (MG) into neurogenic MG-derived progenitor cells (MGPCs) in the adult male and female mouse retina. We found that S1P-related genes were dynamically regulated following retinal damage. (S1P receptor 1) and (sphingosine kinase 1) are expressed at low levels by resting MG and are rapidly upregulated following acute damage.
View Article and Find Full Text PDFNeurotoxicology
September 2025
Department of Otolaryngology Head and Neck Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China. Electronic address:
Gadolinium-based contrast agents (GBCAs) are widely used in systemic magnetic resonance imaging (MRI) and can be employed in otology to evaluate endolymphatic hydrops in patients with Ménière's disease. Given the heavy metal properties of gadolinium and its tendency to deposit in tissues, it is essential to assess its ototoxic risk. We evaluated the ototoxicity of gadodiamide using in vitro and in vivo models.
View Article and Find Full Text PDFBiofabrication
September 2025
Institute of Macromolecular Chemistry, Institute of Macromolecular Chemistry Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Prague, Prague, 162 06, CZECH REPUBLIC.
Extensive peripheral nerve injuries often lead to the loss of neurological function due to slow regeneration and limited recovery over large gaps. Current clinical interventions, such as nerve guidance conduits (NGCs), face challenges in creating biomimetic microenvironments that effectively support nerve repair. The developed GrooveNeuroTube is composed of hyaluronic acid methacrylate and gelatin methacrylate hydrogel, incorporating active agents (growth factors and antibacterial agents) encapsulated within an NGC conduit made of 3D-printed PCL grid fibers.
View Article and Find Full Text PDFCell Rep
September 2025
Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Un
Neurodevelopmental disorders often impair multiple cognitive domains. For instance, a genetic epilepsy syndrome might cause seizures due to cortical hyperexcitability and present with memory impairments arising from hippocampal dysfunction. This study examines how a single disorder differentially affects distinct brain regions using induced pluripotent stem cell (iPSC)-derived cortical- and hippocampal-ganglionic eminence assembloids to model developmental and epileptic encephalopathy 13, a condition arising from gain-of-function mutations in the SCN8A gene encoding the sodium channel Nav1.
View Article and Find Full Text PDF