98%
921
2 minutes
20
Human thyroid papillary carcinomas are characterized by rearrangements of the RET protooncogene with a number of heterologous genes, which generate the RET/papillary thyroid carcinoma (PTC) oncogenes. One of the most frequent variants of these recombination events is the fusion of the intracellular kinase-encoding domain of RET to the first 101 amino acids of a gene named H4(D10S170). We have characterized the H4(D10S170) gene product, showing that it is a ubiquitously expressed 55 KDa nuclear and cytosolic protein that is phosphorylated following serum stimulation. This phosphorylation was found to depend on mitogen-activated protein kinase (MAPK) Erk1/2 activity and to be associated to the relocation of H4(D10S170) from the nucleus to the cytosol. Overexpression of the H4(D10S170) gene was able to induce apoptosis of thyroid follicular epithelial cells; conversely a carboxy-terminal truncated H4(D10S170) mutant H4(1-101), corresponding to the portion included in the RET/PTC1 oncoprotein, behaved as dominant negative on the proapoptotic function and nuclear localization of H4(D10S170). Furthermore, conditional expression of the H4(D10S170)-dominant negative truncated mutant protected cells from stress-induced apoptosis. The substitution of serine 244 with alanine abrogated the apoptotic function of H4(D10S170). These data suggest that loss of the H4(D10S170) gene function might have a role in thyroid carcinogenesis by impairing apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1206981 | DOI Listing |
Oncogene
September 2007
Dipartimento di Biologia e Patologia Cellulare e Molecolare, University 'Federico II', Naples, Italy.
H4(D10S170) gene has been identified upon its frequent rearrangement with RET in papillary thyroid tumours (RET/PTC1). The kinase ataxia telangectasia mutated (ATM) phosphorylates a limited number of downstream protein targets in response to DNA damage. We investigated the potential role of H4(D10S170) in DNA damage signaling pathways.
View Article and Find Full Text PDFOncogene
January 2004
Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o, University Federico II, Naples, Italy.
Human thyroid papillary carcinomas are characterized by rearrangements of the RET protooncogene with a number of heterologous genes, which generate the RET/papillary thyroid carcinoma (PTC) oncogenes. One of the most frequent variants of these recombination events is the fusion of the intracellular kinase-encoding domain of RET to the first 101 amino acids of a gene named H4(D10S170). We have characterized the H4(D10S170) gene product, showing that it is a ubiquitously expressed 55 KDa nuclear and cytosolic protein that is phosphorylated following serum stimulation.
View Article and Find Full Text PDFBlood
October 2001
Hematology Branch, National Heart, Lung, and Blood Institute, and Laboratory of Pathology, Division of Clinical Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
Chromosomal translocations involving the platelet-derived growth factor beta receptor (PDGFbetaR) gene have been reported in some patients with chronic myelomonocytic leukemia (CMML). The resultant fusion proteins have constitutive PDGFbetaR tyrosine kinase activity, but the partner genes previously reported (tel, Huntingtin interacting protein 1 [HIP-1], H4/D10S170) have poorly understood roles in the oncogenic activity of the fusion proteins. A novel PDGFbetaR fusion protein has been characterized in a patient with CMML and an acquired t(5;17)(q33;p13).
View Article and Find Full Text PDFBlood
June 2001
Division of Hematology, Department of Medicine, Harvard Medical School, Boston, MA, USA.
The molecular cloning of the t(5;10)(q33;q22) associated with atypical chronic myeloid leukemia (CML) is reported. Fluorescence in situ hybridization (FISH), Southern blot, and reverse transcriptase- polymerase chain reaction analysis demonstrated that the translocation resulted in an H4/platelet-derived growth factor receptor betaR (PDGFbetaR) fusion transcript that incorporated 5' sequences from H4 fused in frame to 3' PDGFbetaR sequences encoding the transmembrane, WW-like, and tyrosine kinase domains. FISH combined with immunophenotype analysis showed that t(5;10)(q33;q22) was present in CD13(+) and CD14(+) cells but was not observed in CD3(+) or CD19(+) cells.
View Article and Find Full Text PDF