98%
921
2 minutes
20
Microtubule (MT) assembly in vitro is accompanied by hydrolysis of tubulin-bound GTP at E-site. Ni2+, a human carcinogen, has been shown to markedly perturb the MT system in cultured cells and enhance MT assembly in vitro. To further probe the mechanisms of such multiple Ni2+ damaging actions on MT, we have focused on dissecting the role of the Ni2+/GTP interaction in influencing MT assembly in vitro as monitored by a turbidity assay at A350 at 27 degrees C using purified bovine brain MT proteins containing 162 microM each of Mg2+ and EGTA. MT assembly was initiated by addition of GTP and progressed in a GTP dose-dependent manner. The minimal and optimal exogenous [GTP] required for MT assembly were 15.6 and 500 microM, respectively. Replacement of GTP (25-87%) with increasing [NiCl2] while keeping the sum of [GTP] and [Ni2+] constant at 500 microM enabled MT assembly to proceed with shortened "lags" but reaching the same maximum plateau levels or elongation rates as with 500 microM GTP only. However, in reactions with Ni2+ replacing >94% of GTP, marked inhibition of MT assembly (lower plateaus) occurred. Electron microscopic (EM) examinations showed that MT formed with high Ni2+ substitutions for GTP appeared shorter, more numerous, and resistant to Ca2+ disruption than those assembled with 500 microM GTP only. Notably, in the presence of 500 microM Ni2+ with no GTP added, no typical MT were observed under EM, despite increases in turbidity of the reaction. In addition, the critical concentration of MT proteins required for assembly was also considerably decreased under conditions of Ni2+ replacements of GTP. These results point to an important role of GTP/Ni2+ interaction in modulating the Ni2+ enhancement of MT assembly in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2003.07.001 | DOI Listing |
Front Cardiovasc Med
August 2025
Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
In the cardiovascular system, elastic fibres exert a fundamental role providing the long-range elasticity required for physiological functions. Elastic fibres are complex in composition and structure containing, in addition to elastin, a wide range of matrix components, such as microfibrillar proteins, calcium-binding proteins and glycosaminoglycans. Changes in composition and/or structure can affect the biomechanics of the tissue as well as the intrinsic affinity of elastin for Ca ions.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, Massachusetts 02215, United States.
The cytosolic iron-sulfur cluster assembly (CIA) targeting complex maturates over 30 cytosolic and nuclear Fe-S proteins, raising the question of how a single complex recognizes such a diverse set of clients. The discovery of a C-terminal targeting complex recognition (TCR) peptide in up to 25% of CIA clients provided a clue to substrate specificity, yet the molecular and energetic basis for this interaction remained unresolved. By integrating computational and biochemical approaches, we show that the TCR peptide binds a conserved interface between the Cia1 and Cia2 subunits of the targeting complex, even in the absence of the Fe-S cluster.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2025
Key Laboratory of Textile Science & Technology, College of Textiles, Ministry of Education, Donghua University, Shanghai, China.
Persistent bacterial infections remain a major challenge in wound management. Although drug-loaded wound dressings have gained increasing attention, their therapeutic efficacy is often hindered by uncontrolled drug release and a lack of electrical signal responsiveness. Herein, an antibacterial dressing (CCS-PC) with electroactivity and stimulus-responsive drug release properties was fabricated via electro-assembly, wherein chitosan and ciprofloxacin hydrochloride (CIP) were co-deposited onto polypyrrole (PPy)-coated gauze.
View Article and Find Full Text PDFAPMIS
September 2025
Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, India.
Kefir grains offer numerous health benefits, including boosting the immune system, alleviating digestive issues, and enhancing antimicrobial activity. They are rich in beneficial probiotic bacteria that promote gut health and support a balanced intestinal microbiota. "Beta-lactoglobulin (β-lg), a well-known milk protein," is used to create nanofibril structures that can serve as scaffolds.
View Article and Find Full Text PDFBMB Rep
September 2025
Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499; Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon 16499; BK21 R&E Initiative for Advanced Precision Medicine, Ajou University School of Medicine, Suwon 16499, Korea.
Altered nuclear morphology, one of the characteristics of cancer cells, is often indicative of tumor prognosis. While reactive oxygen species (ROS) are known to induce nuclear morphology changes, mechanisms underlying these effects remain elusive, particularly regarding nuclear assembly. We hypothesized that mitotic cells might exhibit increased susceptibility to ROSinduced nuclear deformation due to the dynamic nature of nuclear envelope during mitosis, i.
View Article and Find Full Text PDF