Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To solve the problem of immune incompatibility, nuclear transplantation has been envisaged as a means to produce cells or tissues for human autologous transplantation. Here we have derived embryonic stem cells by the transfer of human somatic nuclei into rabbit oocytes. The number of blastocysts that developed from the fused nuclear transfer was comparable among nuclear donors at ages of 5, 42, 52 and 60 years, and nuclear transfer (NT) embryonic stem cells (ntES cells) were subsequently derived from each of the four age groups. These results suggest that human somatic nuclei can form ntES cells independent of the age of the donor. The derived ntES cells are human based on karyotype, isogenicity, in situ hybridization, PCR and immunocytochemistry with probes that distinguish between the various species. The ntES cells maintain the capability of sustained growth in an undifferentiated state, and form embryoid bodies, which, on further induction, give rise to cell types such as neuron and muscle, as well as mixed cell populations that express markers representative of all three germ layers. Thus, ntES cells derived from human somatic cells by NT to rabbit eggs retain phenotypes similar to those of conventional human ES cells, including the ability to undergo multilineage cellular differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.cr.7290170DOI Listing

Publication Analysis

Top Keywords

ntes cells
20
human somatic
16
embryonic stem
12
stem cells
12
nuclear transfer
12
somatic nuclei
12
cells
11
transfer human
8
nuclei rabbit
8
rabbit oocytes
8

Similar Publications

Targeted radionuclide therapy (TRT) utilizes radiopharmaceuticals to deliver radiation directly to cancer cells while sparing healthy tissues. Beyond the absorbed dose of ablative radiation, TRT induces non-targeted effects (NTEs) that significantly enhance its therapeutic efficacy. These effects include radiation-induced bystander effects (RIBEs), abscopal effects (AEs), radiation-induced genomic instability (RIGI), and adaptive responses, which collectively influence the behavior of cancer cells and the tumor microenvironment (TME).

View Article and Find Full Text PDF

The NTE domain of PTENα/β promotes cancer progression by interacting with WDR5 via its SSSRRSS motif.

Cell Death Dis

May 2024

Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, Jiangsu, China.

PTENα/β, two variants of PTEN, play a key role in promoting tumor growth by interacting with WDR5 through their N-terminal extensions (NTEs). This interaction facilitates the recruitment of the SET1/MLL methyltransferase complex, resulting in histone H3K4 trimethylation and upregulation of oncogenes such as NOTCH3, which in turn promotes tumor growth. However, the molecular mechanism underlying this interaction has remained elusive.

View Article and Find Full Text PDF

Controlling stress and deformation induced by thermo-mechanical stimulation in high-precision mechanical systems can be achieved by mechanical metamaterials (MM) exhibiting negative thermal expansion (NTE) and negative Poisson's ratio (NPR). However, the inverse design of MM exhibiting a wide range of arbitrary target NTEs and NPRs is a challenging task due to the low design flexibility of analytical methods and parametric studies based on numerical simulation. In this study, we propose Bézier curve-based programmable chiral mechanical metamaterials (BPCMs) and a deep autoencoder-based inverse design model (DAIM) for the inverse design of BPCMs.

View Article and Find Full Text PDF

Astronauts on exploratory missions will be exposed to particle radiation of high energy and charge (HZE particles), which have been shown to produce neurochemical and performance deficits in animal models. Exposure to HZE particles can produce both targeted effects, resulting from direct ionization of atoms along the particle track, and non-targeted effects (NTEs) in cells that are distant from the track, extending the range of potential damage beyond the site of irradiation. While recent work suggests that NTEs are primarily responsible for changes in cognitive function after HZE exposures, the relative contributions of targeted and non-targeted effects to neurochemical changes after HZE exposures are unclear.

View Article and Find Full Text PDF

This study describes the development and characterization of novel composite scaffolds, made of an alginate-chitosan hydrogel matrix containing eggshell (ES) particles, for bone tissue engineering applications. Scaffolds with ES particles, either untreated or treated with phosphoric acid to create a nanotextured particle surface, were compared to scaffolds without particles. Results indicate that the nanotexturing process exposed occluded ES proteins orthologous to those in human bone extracellular matrix.

View Article and Find Full Text PDF