Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

How is the trichromatic cone mosaic of Old World primates sampled by retinal circuits to create wavelength opponency? Red-green (L versus M cone) opponency appears to be mediated largely by the segregation of L versus M cone signals to the centre versus the surround of the midget ganglion cell receptive field, implying a complex cone type-specific wiring, the basis of which remains mysterious. Blue-yellow (S versus L+M cone) opponency is mediated by a growing family of low-density ganglion types that receive either excitatory or inhibitory input from S cones. Thus, the retinal circuits that underlie colour signalling in primates may be both more complex and more diverse then previously appreciated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0959-4388(03)00103-xDOI Listing

Publication Analysis

Top Keywords

retinal circuits
8
versus cone
8
cone opponency
8
cone
5
colour coding
4
coding primate
4
primate retina
4
retina diverse
4
diverse cell
4
cell types
4

Similar Publications

Amorphous silicon resistors enable smaller pixels in photovoltaic retinal prosthesis.

J Neural Eng

September 2025

Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, California, 94305, UNITED STATES.

Clinical trials of the photovoltaic subretinal prosthesis PRIMA demonstrated feasibility of prosthetic central vision with resolution matching its 100 μm pixel width. To improve prosthetic acuity further, pixel size should be decreased. However, there are multiple challenges, one of which is related to accommodating a compact shunt resistor within each pixel that discharges the electrodes between stimulation pulses and helps increase the contrast of the electric field pattern.

View Article and Find Full Text PDF

Retinal organoids (ROs) represent a promising regenerative strategy for restoring vision in retinal degenerative diseases, but whether host cone bipolar cells (BCs) in the primate macula can rewire with transplanted photoreceptors remains unresolved. Here, we transplanted genome-edited human retinal organoids lacking ON-BCs ( ROs) into a non-human primate macular degeneration model. Remarkably, host rod and cone BCs extended dendrites toward grafted photoreceptors, forming functional synapses confirmed by immunohistochemistry, ultrastructural imaging, and focal macular electroretinography.

View Article and Find Full Text PDF

What makes human brains distinctive? The answer is hidden at least partially in the myriad synaptic connections made between neurons - the connectome. The foveal retina is a primate specialization which presents a feasible site for deriving a complete connectome of a human CNS structure. In the fovea, cells and circuits are miniaturized and compressed to densely sample the visual image at highest resolution and initiate form, color and motion perception.

View Article and Find Full Text PDF

Design of a Current-Mode OTA-Based Memristor Emulator for Neuromorphic Medical Application.

Micromachines (Basel)

July 2025

Systems Integration & Emerging Energies (SI2E), Electrical Engineering Department, National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia.

This study presents transistor-level simulation results for a novel memristor emulator circuit. The design incorporates an inverter and a current-mode-controlled operational transconductance amplifier to stabilize the output voltage. Transient performance is evaluated across a 20 MHz to 100 MHz frequency range.

View Article and Find Full Text PDF

To establish functional connectivity between two candidate neurons that might form a circuit element, a common approach is to activate an optogenetic tool such as Chrimson in the candidate pre-synaptic neuron and monitor fluorescence of the calcium-sensitive indicator GCaMP in a candidate post-synaptic neuron. While performing such experiments in Drosophila, we found that low levels of leaky Chrimson expression can lead to strong artifactual GCaMP signals in presumptive postsynaptic neurons even when Chrimson is not intentionally expressed in any particular neurons. Withholding all-trans retinal, the chromophore required as a co-factor for Chrimson response to light, eliminates GCaMP signal but does not provide an experimental control for leaky Chrimson expression.

View Article and Find Full Text PDF