Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: To assess the relationship between development of antiretroviral drug resistance and adherence by measured treatment duration, virologic suppression, and the rate of accumulating new drug resistance mutations at different levels of adherence.

Methods: Adherence was measured with unannounced pill counts performed at the participant's usual place of residence in a prospective cohort of HIV-positive urban poor individuals. Two genotypic resistance tests separated by 6 months (G1 and G2) were obtained in individuals on a stable regimen and with detectable viremia (> 50 copies/ml). The primary resistance outcome was the number of new HIV antiretroviral drug resistance mutations occurring over the 6 months between G1 and G2.

Results: High levels of adherence were closely associated with greater time on treatment (P < 0.0001) and viral suppression (P < 0.0001) in 148 individuals. In a subset of 57 patients with a plasma viral load > 50 copies/ml on stable therapy, the accumulation of new drug resistance mutations was positively associated with the duration of prior treatment (P = 0.03) and pill count adherence (P = 0.002). Assuming fully suppressed individuals (< 50 copies/ml) do not develop resistance, it was estimated that 23% of all drug resistance occurs in the top quintile of adherence (92-100%), and over 50% of all drug resistance mutations occur in the top two quintiles of adherence (79-100%).

Conclusion: Increasing rates of viral suppression at high levels of adherence is balanced by increasing rates of drug resistance among viremic patients. Exceptionally high levels of adherence will not prevent population levels of drug resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00002030-200309050-00011DOI Listing

Publication Analysis

Top Keywords

drug resistance
36
resistance mutations
20
high levels
16
levels adherence
16
resistance
12
adherence
9
drug
9
antiretroviral drug
8
adherence measured
8
viral suppression
8

Similar Publications

Background: Glucocorticoids remain the primary treatment for acute lymphoblastic leukemia (ALL) in children. However, glucocorticoid-resistant ALL exhibits increased mortality rates. To overcome resistance and improve management strategies, alternative therapeutic agents are required.

View Article and Find Full Text PDF

The MET receptor tyrosine kinase is a pivotal regulator of cellular survival, motility, and proliferation. Mutations leading to skipping of exon 14 (METΔex14) within the juxtamembrane domain of MET impair receptor degradation and prolong oncogenic signaling, contributing significantly to tumor progression across multiple cancer types. METΔex14 mutations are associated with aggressive clinical behavior, therapeutic resistance, and poor outcomes.

View Article and Find Full Text PDF

remains a leading respiratory pathogen for children and the elderly. In Taiwan, a national PCV13 catch-up vaccination programme for children began in March 2013. This study investigates the population structure and antimicrobial profiles of pneumococcal isolates in Taiwan from 2006 to 2022.

View Article and Find Full Text PDF

Among the different types of HIV-1 maturation inhibitors, those that stabilize the junction between the capsid protein C-terminal domain (CA) and the spacer peptide 1 (SP1) within the immature Gag lattice are promising candidates for antiretroviral therapies. Here, we report the atomic-resolution structure of CA-SP1 assemblies with the small-molecule maturation inhibitor PF-46396 and the assembly cofactor inositol hexakisphosphate (IP6), determined by magic angle spinning (MAS) NMR spectroscopy. Our results reveal that although the two PF-46396 enantiomers exhibit distinct binding modes, they both possess similar anti-HIV potency.

View Article and Find Full Text PDF

Objectives: Antibiotic resistance towards penicillin has been attempted to counter by chemically modifying ampicillin through the conjugation with silver nanoparticles (AgNPs). The current study optimizes the conditions for synthesizing and characterizing AgNP-ampicillin to quantify the conjugation extent, evaluate the antibacterial efficacy, and explore the underlying antibacterial mechanisms.

Materials And Methods: AgNPs were synthesized from silver nitrate by chemical reduction method, silica-coated with tetraethyl orthosilicate (TEOS) and amine functionalized by (3-aminopropyl) triethoxysilane (APTES), which was then conjugated with ampicillin via the carbodiimide chemistry.

View Article and Find Full Text PDF