98%
921
2 minutes
20
A methane oxidizing biofilter system fitted to the passive venting system of a harbor sludge landfill in Germany was characterized with respect to the the methanotrophic population, methane oxidizing capacity, and reaction kinetics. Methanotrophic cell counts stabilized on a high level with 1.3 x 10(8) to 7.1 x 10(9) cells g dw(-1) about one year after first biofilter operation, and a maximum of 1.2 x 10(11) cells g dw(-1). Potential methane oxidizing activity varied between 5.3 and 10.7 microg h(-1) g dw(-1). Cell numbers correlated well with methane oxidation activities. Extrapolation of potential activities gave methane removal rates between 35 and 109 g CH4 h(-1) m(-3), calculated for 30 degrees C. Optimum temperature was 38 degrees C for freshly sampled biofilter material and 22 degrees C for a methanotrophic enrichment culture grown at 10 degrees C incubation temperature. Substrate kinetics revealed the presence of a low-affinity methane oxidizing community with a high Vmax of 1.78 micromol CH4 h(-1) g ww(-1) and a high K(M) of 15.1 microM. K(MO2) for methane oxidation was 58 microM. No substantial methane oxidizing activity was detected below 1.7-2.6 vol.-% O2 in the gaseous phase. Methane deprivation led to a decrease in methane oxidation activity within 5-9 weeks but could still be detected after 25 weeks of substrate deprivation and was fully restored within 3 weeks of continuous methane supply. Very high salt loads are leached from the novel biofilter material, expanded clay, yielding electric conductivity values of up to 15 mS cm(-1) in the leachate. Values > 6 mS cm(-1) were shown to depress methane consumption. Water retention characteristics of the material proved to be favourable for methane oxidizing systems with a gas permeable volume of 78% of bulk volume at field capacity water content. Correspondingly, no influence of water content on methane oxidation activity could be detected at water contents between 2.5 and 20 vol.-%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0956-053X(03)00105-3 | DOI Listing |
Photoacoustics
October 2025
Hubei Key Laboratory of Intelligent Wireless Communications, Hubei Engineering Research Center of Intelligent IOT technology, College of Electronics and Information Engineering, South-Central Minzu University, Wuhan 430074, China.
A novel gourd-type photoacoustic cell (GTPAC) has been developed, featuring a highly reflective, polished gold film-coated inner wall that minimizes optical loss and maximizes light utilization efficiency. GTPAC integrates two coupled spherical chambers with a radius ratio 2:3, which is close to the golden ratio. Its unique Gaussian curvature distribution enables multi-directional, disordered light beam reflection without complex optical alignment.
View Article and Find Full Text PDFPLoS One
September 2025
Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, China.
Double-Layer Steamed Milk Custard (DLSMC) is a famous traditional Chinese dessert. This study aimed to analyze the flavor and the changes in metabolites during different stages of DLSMC preparation, including raw buffalo milk, thermo-processing, first and second-layer milk skin formation. Electronic nose and electronic tongue were employed to preliminarily assess the overall flavor characteristics between these stages.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Iron plaque (IP) on rice root surfaces has been extensively documented as a natural barrier that effectively reduces contaminant bioavailability and accumulation. However, its regulatory mechanisms in rhizospheric methane oxidation and biological nitrogen fixation (BNF) remain elusive. This study reveals a previously unrecognized function of IP: mediating methanotrophic nitrogen fixation through coupled aerobic methane oxidation and IP reduction (Fe-MOX).
View Article and Find Full Text PDFmSystems
September 2025
Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA.
Dinitrogen (N) fixation provides bioavailable nitrogen to the biosphere. However, in some habitats (e.g.
View Article and Find Full Text PDFSci Total Environ
September 2025
Department of Animal Sciences and Aquatic Ecology, Ghent University, Gent, Belgium.
Wetlands play a crucial role in global greenhouse gas (GHG) dynamics, yet their response to climate change is not yet fully understood. Here, we investigate how increasing temperature and oxygen availability interact to regulate wetland GHG emissions through combined analysis of biogeochemical and functional gene measurements. We found distinct temperature-dependent shifts in carbon emission pathways, with CO emissions unexpectedly declining as temperature rose from 15 to 25 °C, while increasing consistently at higher temperatures (25-35 °C), reflecting a transition to more thermally-driven processes.
View Article and Find Full Text PDF