Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Increased inactivation of nitric oxide by superoxide (O2*-) contributes to endothelial dysfunction in patients with coronary disease (CAD). We therefore characterized the vascular activities of xanthine oxidase and NAD(P)H oxidase, 2 major O2*--producing enzyme systems, and their relationship with flow-dependent, endothelium-mediated vasodilation (FDD) in patients with CAD.

Methods And Results: Xanthine- and NAD(P)H-mediated O*.- formation was determined in coronary arteries from 10 patients with CAD and 10 controls by using electron spin resonance spectroscopy. Furthermore, activity of endothelium-bound xanthine oxidase in vivo and FDD of the radial artery were determined in 21 patients with CAD and 10 controls. FDD was measured before and after infusion of the antioxidant vitamin C (25 mg/min i.a.) to determine the portion of FDD inhibited by radicals. In coronary arteries from patients with CAD, xanthine- and NAD(P)H-mediated O2*- formation was increased compared with controls (xanthine: 12+/-2 versus 7+/-1 nmol O2*-/ microg protein; NADH: 11+/-1 versus 7+/-1 nmol O2*-/ microg protein; and NADPH: 12+/-2 versus 9+/-1 nmol O2*-/ microg protein; each P<0.05). Endothelium-bound xanthine oxidase activity was increased by >200% in patients with CAD (25+/-4 versus 9+/-1 nmol O2*-/ microL plasma per min; P<0.05) and correlated inversely with FDD (r=-0.55; P<0.05) and positively with the effect of vitamin C on FDD (r=0.54; P<0.05).

Conclusions: The present study represents the first electron spin resonance measurements of xanthine and NAD(P)H oxidase activity in human coronary arteries and supports the concept that increased activities of both enzymes contribute to increased vascular oxidant stress in patients with CAD. Furthermore, the present study suggests that increased xanthine oxidase activity contributes to endothelial dysfunction in patients with CAD and may thereby promote the atherosclerotic process.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.cir.0000056762.69302.46DOI Listing

Publication Analysis

Top Keywords

patients cad
16
nmol o2*-/
16
o2*-/ microg
12
microg protein
12
electron spin
8
spin resonance
8
nadph oxidase
8
patients coronary
8
xanthine oxidase
8
xanthine- nadph-mediated
8

Similar Publications

From Gut Inflammation to Cardiovascular Conflagration: Mapping IBD's Cardiometabolic Risks.

Curr Atheroscler Rep

September 2025

Division of Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Health, Houston Methodist Hospital, Houston, TX, USA.

Purpose Of Review: This review aims to characterize the known cardiovascular (CV) manifestations associated with inflammatory bowel disease (IBD) and the underlying mechanisms driving these associations.

Recent Findings: Gut dysbiosis, a hallmark of patients with IBD, can result in both local and systemic inflammation, thereby potentially increasing the risk of cardiovascular disease (CVD) in the IBD population. Micronutrient deficiencies, anemia, and sarcopenia independently increase the risk of CVD and are frequent comorbidities of patients with IBD.

View Article and Find Full Text PDF

Patients with inflammation-associated coronary artery disease (CAD) may exhibit rapid progression and require regular coronary imaging. To evaluate the diagnostic performance of spectral photon-counting detector (PCD) coronary CTA with reduced radiation and contrast media doses for detecting coronary stenosis and in-stent restenosis in patients with inflammation-associated CAD. This prospective study enrolled patients with inflammation-associated CAD from January 2023 to March 2024.

View Article and Find Full Text PDF

Background Hyperuricemia (HUA) frequently coexists with coronary artery disease (CAD) and is linked to adverse cardiovascular outcomes. The long-term impact of urate-lowering therapy (ULT) on clinical outcomes, including all-cause mortality and major adverse cardiovascular events (MACEs), in CAD patients after percutaneous coronary intervention (PCI) has not been determined. That was the aim of this study.

View Article and Find Full Text PDF

Background: High-density lipoprotein (HDL) function, rather than its concentration, plays a crucial role in the development of coronary artery disease (CAD). Diminished HDL antioxidant properties, indicated by elevated oxidized HDL (nHDL) and diminished paraoxonase-1 (PON-1) activity, may contribute to vascular dysfunction and inflammation. Data on these associations in CAD patients, including acute coronary syndrome (ACS), remain limited.

View Article and Find Full Text PDF

Unlabelled: Autoimmune haemolytic anaemia (AIHA) is caused by antibody-mediated destruction of red blood cells. There are two broad categories of AIHA: warm and cold, both categorized by the thermal reactivity of the autoantibodies. Cold agglutinin disease (CAD) occurs at temperatures below normal body temperature and primarily involves IgM antibodies.

View Article and Find Full Text PDF