98%
921
2 minutes
20
The mechanisms by which mammalian cells remodel the actin cytoskeleton in response to motogenic stimuli are complex and a topic of intense study. Dynamin 2 (Dyn2) is a large GTPase that interacts directly with several actin binding proteins, including cortactin. In this study, we demonstrate that Dyn2 and cortactin function to mediate dynamic remodeling of the actin cytoskeleton in response to stimulation with the motogenic growth factor platelet-derived growth factor. On stimulation, Dyn2 and cortactin coassemble into large, circular structures on the dorsal cell surface. These "waves" promote an active reorganization of actin filaments in the anterior cytoplasm and function to disassemble actin stress fibers. Importantly, inhibition of Dyn2 and cortactin function potently blocked the formation of waves and subsequent actin reorganization. These findings demonstrate that cortactin and Dyn2 function together in a supramolecular complex that assembles in response to growth factor stimulation and mediates the remodeling of actin to facilitate lamellipodial protrusion at the leading edge of migrating cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC151581 | PMC |
http://dx.doi.org/10.1091/mbc.e02-08-0466 | DOI Listing |
J Neurochem
April 2011
Mayo Graduate School, The Molecular Neuroscience Program, Rochester, Minnesota, USA.
Neuronal growth cone (GC) migration and targeting are essential processes for the formation of a neural network during embryonic development. Currently, the mechanisms that support directed motility of GCs are not fully defined. The large GTPase dynamin and an interacting actin-binding protein, cortactin, have been localized to GCs, although the function performed by this complex is unclear.
View Article and Find Full Text PDFMol Cell Biol
February 2010
Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
The mechanisms by which epithelial cells regulate clathrin-mediated endocytosis (CME) of transferrin are poorly defined and generally viewed as a constitutive process that occurs continuously without regulatory constraints. In this study, we demonstrate for the first time that endocytosis of the transferrin receptor is a regulated process that requires activated Src kinase and, subsequently, phosphorylation of two important components of the endocytic machinery, namely, the large GTPase dynamin 2 (Dyn2) and its associated actin-binding protein, cortactin (Cort). To our knowledge these findings are among the first to implicate an Src-mediated endocytic cascade in what was previously presumed to be a nonregulated internalization process.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2009
Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
The mechanisms controlling cell shape changes within epithelial monolayers for tissue formation and reorganization remain unclear. Here, we investigate the role of dynamin, a large GTPase, in epithelial morphogenesis. Depletion of dynamin 2 (Dyn2), the only dynamin in epithelial cells, prevents establishment and maintenance of epithelial polarity, with no junctional formation and abnormal actin organization.
View Article and Find Full Text PDFCell Microbiol
February 2007
Centre for Molecular Microbiology and Infection, Imperial College London, UK.
After attaching to human intestinal epithelial cells, enteropathogenic Escherichia coli (EPEC) induces the formation of an actin-rich pedestal-like structure. The signalling pathway leading to pedestal formation is initiated by the bacterial protein Tir, which is inserted into the host cell plasma membrane. The domain exposed on the cell surface binds to another bacterial protein, intimin, while one of the cytoplasmic domains binds the adaptor protein Nck.
View Article and Find Full Text PDFNat Cell Biol
May 2005
Center for Basic Research in Digestive Diseases and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA.
Cortactin is an actin-binding protein that has recently been implicated in endocytosis. It binds directly to dynamin-2 (Dyn2), a large GTPase that mediates the formation of vesicles from the plasma membrane and the Golgi. Here we show that cortactin associates with the Golgi to regulate the actin- and Dyn2-dependent transport of cargo.
View Article and Find Full Text PDF