Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Infections often precede the development of autoimmunity. Correlation between infection with a specific pathogen and a particular autoimmune disease ranges from moderately strong to quite weak. This lack of correspondence suggests that autoimmunity may result from microbial activation of a generic, as opposed to pathogen-specific host-defense response. The Toll-like receptors, essential to host recognition of microbial invasion, signal through a common, highly conserved pathway, activate innate immunity, and control adaptive immune responses. To determine the influence of Toll/IL-1 signaling on the development of autoimmunity, the responses of wild-type (WT) mice and IL-1R-associated kinase 1 (IRAK1)-deficient mice to induction of experimental autoimmune encephalomyelitis were compared. C57BL/6 and B6.IRAK1-deficient mice were immunized with MOG 35-55/CFA or MOG 35-55/CpG DNA/IFA. WT animals developed severe disease, whereas IRAK1-deficient mice were resistant to experimental autoimmune encephalomyelitis, exhibiting little or no CNS inflammation. IRAK1-deficient T cells also displayed impaired Th1 development, particularly during disease induction, despite normal TCR signaling. These results suggest that IRAK1 and the Toll/IL-1 pathway play an essential role in T cell priming, and demonstrate one means through which innate immunity can control subsequent development of autoimmunity. These findings may also help explain the association between antecedent infection and the development or exacerbations of some autoimmune diseases.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.170.6.2833DOI Listing

Publication Analysis

Top Keywords

development autoimmunity
12
innate immunity
8
immunity control
8
irak1-deficient mice
8
experimental autoimmune
8
autoimmune encephalomyelitis
8
autoimmunity
5
development
5
il-1 receptor-associated
4
receptor-associated kinase
4

Similar Publications

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.

View Article and Find Full Text PDF

Introduction: Conventional dendritic cells (cDCs) in the gut express the vitamin A (VA)-converting enzyme retinal dehydrogenase 2 (RALDH2) and produce significant amounts of retinoic acid (RA). RA derived from gut cDCs contributes to the generation of tolerogenic responses by promoting Treg differentiation while inhibiting Th1 and Th17 cell differentiation. In this study, we investigated whether similar RA-mediated immunoregulatory mechanisms operate in the pancreas using an experimental autoimmune pancreatitis (AIP) model.

View Article and Find Full Text PDF

Safety, immunogenicity and efficacy of the Shingrix vaccine in immunocompromised varicella zoster virus naïve pediatric patients.

Vaccine

September 2025

Department of Paediatric Immunology and Rheumatology, Wilhelmina Children's Hospital/ University Medical Center Utrecht, Utrecht, the Netherlands; Faculty of Medicine, Utrecht University, Utrecht, the Netherlands.

Background: Pediatric patients with autoimmune and inflammatory diseases often require immunosuppressive therapy, which increases their susceptibility to infections, including varicella-zoster virus (VZV). While the live attenuated varicella vaccine is contraindicated in most immunocompromised children, the recombinant subunit vaccine, Shingrix, may offer an alternative preventive strategy. However, data on its safety, immunogenicity, and efficacy in pediatric VZV-naïve patients remain limited.

View Article and Find Full Text PDF

The Nucleolus and Its Associated Pathologies.

WIREs Mech Dis

September 2025

GIMUNICAH, Faculty of Medicine, Pontificia Universidad Católica de Honduras, San Pedro Sula, Honduras.

The nucleolus, traditionally known for its role in ribosome biogenesis, is now recognized for its broader functions, including cellular stress adaptation and its involvement in various pathological processes, such as ribosomal alterations, viral infections, autoimmune disorders, and age-related diseases. Disruptions in nucleolar function can impair protein synthesis, cellular homeostasis, and immune responses, leading to multisystem disorders and increased susceptibility to neoplasms. This review classifies nucleolus-associated diseases into seven categories: deficiencies in protein synthesis, ribosomal and non-ribosomal alterations, cancer and nucleolar alterations, diseases related to aging and cellular stress, autoimmune diseases, and viral diseases.

View Article and Find Full Text PDF

Autoimmune diseases (AIDs) constitute a group of disorders where the immune system mistakenly attacks the body's tissues. The pathogenesis of AIDs involve a breakdown in immune tolerance, culminating in an immune response that targets autoantigens. In adaptive immunity, secondary rearrangement of T cell receptors (TCRs) and B cell receptors (BCRs) involves sequential V(D)J recombination events during lymphocyte development.

View Article and Find Full Text PDF