High oxygen concentrations predispose mouse lungs to the deleterious effects of high stretch ventilation.

J Appl Physiol (1985)

Departments of Physiology and Pharmacology, Obstetrics and Gynaecology, and Medicine, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada N6A 4V2.

Published: March 2003


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mechanical ventilation is a necessary intervention for patients with acute lung injury. However, mechanical ventilation can propagate acute lung injury and increase systemic inflammation. The exposure to >21% oxygen is often associated with mechanical ventilation yet has not been examined within the context of lung stretch. We hypothesized that mice exposed to >90% oxygen will be more susceptible to the deleterious effects of high stretch mechanical ventilation. C57B1/6 mice were randomized into 48-h exposure of 21 or >90% oxygen; mice were then killed, and isolated lungs were randomized into a nonstretch or an ex vivo, high-stretch mechanical ventilation group. Lungs were assessed for compliance and lavaged for surfactant analysis, and cytokine measurements or lungs were homogenized for surfactant-associated protein analysis. Mice exposed to >90% oxygen + stretch had significantly lower compliance, altered pulmonary surfactant, and increased inflammatory cytokines compared with all other groups. Our conclusion is that 48 h of >90% oxygen and high-stretch mechanical ventilation deleteriously affect lung function to a greater degree than stretch alone.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00619.2002DOI Listing

Publication Analysis

Top Keywords

mechanical ventilation
24
>90% oxygen
16
deleterious effects
8
effects high
8
high stretch
8
acute lung
8
lung injury
8
mice exposed
8
exposed >90%
8
high-stretch mechanical
8

Similar Publications

Saturation of respiratory strain during robotic hysterectomy in obese women with endometrial cancer.

J Robot Surg

September 2025

Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UT Health San Antonio, 7703 Floyd Curl Drive, 7836, San Antonio, TX, 78229-3900, USA.

To evaluate intraoperative ventilatory mechanics during robotic-assisted hysterectomy in obese women with endometrial cancer and introduce the concept of a physiologic "ceiling effect" in respiratory strain. We conducted a retrospective cohort study of 89 women with biopsy-confirmed endometrial cancer who underwent robotic-assisted total hysterectomy between 2011 and 2015. Intraoperative ventilatory parameters, including plateau airway pressure and static lung compliance, were recorded at five-minute intervals.

View Article and Find Full Text PDF

Introduction: Severe viral infections are common in patients requiring admission to intensive care units (ICU). Furthermore, these patients often have additional secondary or co-infections. Despite their prevalence, it remains uncertain to what extent those additional infections contribute to worse outcomes for patients with severe viral infections requiring ICU admission.

View Article and Find Full Text PDF

AI Model Based on Diaphragm Ultrasound to Improve the Predictive Performance of Invasive Mechanical Ventilation Weaning: Prospective Cohort Study.

JMIR Form Res

September 2025

Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Geriatrics Institute, No. 106, Zhongshaner Rd, Guangzhou, 510080, China, 86 15920151904.

Background: Point-of-care ultrasonography has become a valuable tool for assessing diaphragmatic function in critically ill patients receiving invasive mechanical ventilation. However, conventional diaphragm ultrasound assessment remains highly operator-dependent and subjective. Previous research introduced automatic measurement of diaphragmatic excursion and velocity using 2D speckle-tracking technology.

View Article and Find Full Text PDF

Background: Meconium aspiration syndrome (MAS), a common cause of respiratory failure in late preterm and term neonates, is associated with a high risk of mortality and morbidity. Amongst all the treatment modalities for severe MAS, surfactant administration has a proven role in decreasing progressive respiratory failure.

Methods: The present open-label randomised controlled trial aimed to determine the effect of early (≤ 2 h) bolus surfactant therapy as compared to standard care on the total duration of respiratory support.

View Article and Find Full Text PDF

Background: Respiratory distress syndrome (RDS) is a leading cause of neonatal morbidity and mortality in low- and middle-income countries (LMICs). The feasibility and effectiveness of bovine versus porcine surfactants via less invasive surfactant administration (LISA) remain unstudied in LMICs. We compared clinical outcomes and cost-effectiveness of BLES versus poractant alfa in preterm infants with RDS managed with LISA.

View Article and Find Full Text PDF