Three Brick genes have distinct functions in a common pathway promoting polarized cell division and cell morphogenesis in the maize leaf epidermis.

Development

Section of Cell and Developmental Biology, UC San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA.

Published: February 2003


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We have taken a genetic approach to investigating cytoskeleton-dependent mechanisms governing cell morphogenesis in the maize leaf epidermis. Previously, we showed that the Brick1 (Brk1) gene is required for the formation of epidermal cell lobes as well as for properly polarized divisions of stomatal subsidiary mother cells, and encodes an 8 kDa protein highly conserved in plants and animals. Here, we show that two additional Brick genes, Brk2 and Brk3, are involved in the same aspects of epidermal cell morphogenesis and division. As shown previously for Brk1, analysis of the cytoskeleton shows that Brk2 and Brk3 are required for the formation of local F-actin enrichments associated with lobe outgrowth in wild-type cells. Analysis of brk1;brk2, brk1;brk3 and brk2;brk3 double mutants shows that their phenotypes are the same as those of brk single mutants. Mosaic analysis shows that Brk1 acts non cell-autonomously over a short distance. By contrast, Brk2 and Brk3 act cell-autonomously to promote pavement cell lobe formation, but Brk3 acts non cell-autonomously, and Brk2 partially non cell-autonomously, to promote polarized subsidiary mother cell divisions. Together, these observations indicate that all three Brk genes act in a common pathway in which each Brk gene has a distinct function. Recent work demonstrating a function for the mammalian homolog of BRK1 (HSPC300) in activation of Arp2/3-dependent actin polymerization implicates the Brk pathway in local regulation of actin polymerization in plant cells.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.00290DOI Listing

Publication Analysis

Top Keywords

cell morphogenesis
12
brk2 brk3
12
brick genes
8
common pathway
8
morphogenesis maize
8
maize leaf
8
leaf epidermis
8
required formation
8
epidermal cell
8
subsidiary mother
8

Similar Publications

Objective: .Aim: To investigate the pathomorphological changes in the terminal chorionic villi during COVID-19 in pregnant women.

Patients And Methods: Materials and Methods: A total of 123 placentas were studied in cases of live term births (groups І) and antenatal asphyxia (groups ІІ).

View Article and Find Full Text PDF

How compartments talk: Compartment coupling guides cochlear development.

PLoS Biol

September 2025

Otolaryngology-Head & Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America.

Morphogens cooperate to guide development of the inner ear cochlea, but how do compartments communicate? A recent study in PLOS Biology reveals how planar cell polarity of individual cells is integrated across distinct regional compartments to ensure proper organ morphogenesis.

View Article and Find Full Text PDF

Roles of Extracellular Superoxide Dismutase in Regulating Cell Migration and Vesicle Trafficking in Dictyostelium and Mammalian Cells.

Dev Growth Differ

September 2025

Department of Biological Sciences, College of Arts, Sciences, and Education, Florida International University, Miami, Florida, USA.

Superoxide dismutases (SODs) are key regulators of reactive oxygen species (ROS) and redox balance. Although intracellular SODs have been extensively studied, growing attention has been directed toward understanding the roles of extracellular SODs in both Dictyostelium and mammalian systems. In Dictyostelium discoideum, SodC is a glycosylphosphatidylinositol (GPI)-anchored enzyme that modulates extracellular superoxide to regulate Ras, PI3K signaling, and cytoskeletal remodeling during directional cell migration.

View Article and Find Full Text PDF

Multicellular organisms generate organizational complexity through morphogenesis, in which mechanical forces orchestrate the movements and deformations of cells and tissues, while chemical signals regulate the molecular events that generate and coordinate these forces. One common denominator that is critical both for mechanics and biochemistry is material property. Material properties define how materials deform or rearrange under applied forces, and how rapidly molecules interact or spread in space and time.

View Article and Find Full Text PDF

Background: Red blood cell (RBC) transfusion is a common intervention for anemia in preterm infants; however, its association with bronchopulmonary dysplasia (BPD) remains debated. While biological mechanisms suggest potential harm, the clinical impact of transfusion frequency on BPD incidence and severity remains unclear.

Objective: To investigate whether RBC transfusion frequency is independently associated with the risk and severity of BPD in preterm infants born before 32 weeks of gestation.

View Article and Find Full Text PDF