Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Guanylin, an intestinal peptide hormone and endogenous ligand of guanylyl cyclase C, is produced as the corresponding prohormone proguanylin. The mature hormone consists of 15 amino acid residues, representing the COOH-terminal part of the prohormone comprised of 94 amino acid residues. Here we report the recombinant expression and purification of proguanylin with its native disulfide connectivity, as well as the biophysical characterization of the recombinant and native protein. The comparison of recombinant and native proguanylin revealed identical biophysical and structural properties, as deduced from CZE, HPLC, and mass spectrometry, as well as NMR spectroscopy and CD spectroscopy at various temperatures and pH values. Exhaustive analytical ultracentrifugation studies were employed for protein concentrations up to the millimolar range to determine the association state of recombinant as well as native proguanylin, revealing both proteins to be monomeric at the applied solution conditions. As a result, a former identified close proximity between the termini of proguanylin is due to intramolecular interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi026434jDOI Listing

Publication Analysis

Top Keywords

identical biophysical
8
amino acid
8
acid residues
8
recombinant native
8
native proguanylin
8
proguanylin
6
native
5
native recombinant
4
recombinant proguanylin
4
proguanylin feature
4

Similar Publications

Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) play crucial roles in regulating cell growth and brain development. Dysregulation of these kinases is linked to disorders like Down syndrome and cancers. The selective inhibition of DYRK1A over other isoforms remains a significant challenge due to their high structural similarity.

View Article and Find Full Text PDF

Biomolecular condensates (BMCs) are central to subcellular organization, influencing processes from RNA metabolism to the stress response and amyloid pathologies. Despite their near ubiquity, we still do not fully understand how the primary sequence of biomolecules influences the formation and dynamics of condensates. Here, we examine how cationic amino acid identity shapes the properties of protein-RNA coacervates.

View Article and Find Full Text PDF

Opening and closing of a cryptic pocket in VP35 toggles it between two different RNA-binding modes.

Elife

September 2025

Department of Biochemistry & Biophysics and Bioengineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.

Cryptic pockets are of growing interest as potential drug targets, particularly to control protein-nucleic acid interactions that often occur via flat surfaces. However, it remains unclear whether cryptic pockets contribute to protein function or if they are merely happenstantial features that can easily be evolved away to achieve drug resistance. Here, we explore whether a cryptic pocket in the Interferon Inhibitory Domain (IID) of viral protein 35 (VP35) of Zaire ebolavirus aids its ability to bind double-stranded RNA (dsRNA).

View Article and Find Full Text PDF

Background And Purpose: Methanobactins are peptides with high copper affinity and potential to treat Wilson disease. We examined how two methanobactins (ARBM101 and MB-OB3b) affected copper handling in the LPP Atp7b Wilson disease rat model, compared to penicillamine or saline, by Cu positron emission tomography/magnetic resonance imaging. Heterozygotes served as controls.

View Article and Find Full Text PDF

Crystal structures of 40- and 71-substitution variants of hydroxynitrile lyase from rubber tree.

Acta Crystallogr D Struct Biol

September 2025

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.

Hydroxynitrile lyase from Hevea brasiliensis (HbHNL) and the esterase SABP2 from Nicotiana tabacum share the α/β-hydrolase fold, a Ser-His-Asp catalytic triad and 44% sequence identity, yet catalyze different reactions. Prior studies showed that three active-site substitutions in HbHNL conferred weak esterase activity. To investigate how regions beyond the active site influence catalytic efficiency and active-site geometry, we engineered HbHNL variants with increasing numbers of substitutions to match SABP2.

View Article and Find Full Text PDF