Hierarchical statistical modelling of influenza epidemic dynamics in space and time.

Stat Med

Arrhythmia Management Clinical & Outcomes Research, Medtronic Inc, 7000 Central Avenue NE, MS CW300, Minneapolis MN 55432-3576, USA.

Published: September 2002


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An infectious disease typically spreads via contact between infected and susceptible individuals. Since the small-scale movements and contacts between people are generally not recorded, available data regarding infectious disease are often aggregations in space and time, yielding small-area counts of the number infected during successive, regular time intervals. In this paper, we develop a spatially descriptive, temporally dynamic hierarchical model to be fitted to such data. Disease counts are viewed as a realization from an underlying multivariate autoregressive process, where the relative risk of infection incorporates the space-time dynamic. We take a Bayesian approach, using Markov chain Monte Carlo to compute posterior estimates of all parameters of interest. We apply the methodology to an influenza epidemic in Scotland during the years 1989-1990.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.1217DOI Listing

Publication Analysis

Top Keywords

influenza epidemic
8
space time
8
infectious disease
8
hierarchical statistical
4
statistical modelling
4
modelling influenza
4
epidemic dynamics
4
dynamics space
4
time infectious
4
disease typically
4

Similar Publications

We study the dynamics of coexisting influenza and SARS-CoV-2 by adapting a well-established age-specific COVID-19 model to a multi-pathogen framework. Sensitivity analysis and adjustment of the model to real-world data are used to investigate the influence of age-related factors on disease dynamics. Our findings underscore the critical role that transmission rates play in shaping the spread of influenza and COVID-19.

View Article and Find Full Text PDF

Severe pneumonia, as a critical and prevalent condition of the respiratory system, poses a significant threat to patient survival and health outcomes. This article focuses on the similarities and differences between community-acquired pneumonia (CAP) and hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP). There is significant divergence in the predominant pathogens between severe community-acquired pneumonia (SCAP) and HAP/VAP.

View Article and Find Full Text PDF

Analyzing Reddit Social Media Content in the United States Related to H5N1: Sentiment and Topic Modeling Study.

J Med Internet Res

September 2025

Artificial Intelligence and Mathematical Modeling Lab, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.

Background: The H5N1 avian influenza A virus represents a serious threat to both animal and human health, with the potential to escalate into a global pandemic. Effective monitoring of social media during H5N1 avian influenza outbreaks could potentially offer critical insights to guide public health strategies. Social media platforms like Reddit, with their diverse and region-specific communities, provide a rich source of data that can reveal collective attitudes, concerns, and behavioral trends in real time.

View Article and Find Full Text PDF

Overview: We analysed Australian Immunisation Register (AIR) data, predominantly for National Immunisation Program funded vaccines, as at 2 April 2023 for children, adolescents and adults, focusing on the calendar year 2022 and on trends from previous years. This report aims to provide comprehensive analysis and interpretation of vaccination coverage data to inform immunisation policy and programs.

Children: Fully vaccinated coverage in Australian children in 2022 was 0.

View Article and Find Full Text PDF

Matrix Protein 1 (M1) of Influenza A Virus: Structural and Functional Insights.

Emerg Microbes Infect

September 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.

Enveloped viruses rely on matrix proteins for structural integrity and lifecycle progression. Matrix protein 1 (M1) is the most abundant structural protein of influenza A virus (IAV), playing a multifaceted role in viral uncoating, polymerase activity, vRNA transcription and replication, and assembly and budding. The M1 protein not only interacts with host cells but also regulates viral morphogenesis, thereby influencing viral transmissibility and pathogenicity.

View Article and Find Full Text PDF