For patients with end-stage liver failure, liver transplantation (LT) remains the standard-of-care, though five-year allograft survival rates remain below 80%. Liver ischemia reperfusion injuries (LIRI) arise during transplant and contribute to allograft dysfunction. While many drivers of LIRI have been well-characterized, the relationships between LIRI and later immunological signatures remain poorly understood, possibly because of limited integrated studies examining immunological signatures across the LT process.
View Article and Find Full Text PDFPLoS Comput Biol
December 2024
Systems serology aims to broadly profile the antigen binding, Fc biophysical features, immune receptor engagement, and effector functions of antibodies. This experimental approach excels at identifying antibody functional features that are relevant to a particular disease. However, a crucial limitation of this approach is its incomplete description of what structural features of the antibodies are responsible for the observed immune receptor engagement and effector functions.
View Article and Find Full Text PDFRecent biological studies have been revolutionized in scale and granularity by multiplex and high-throughput assays. Profiling cell responses across several experimental parameters, such as perturbations, time, and genetic contexts, leads to richer and more generalizable findings. However, these multidimensional datasets necessitate a reevaluation of the conventional methods for their representation and analysis.
View Article and Find Full Text PDFTensor factorization is a dimensionality reduction method applied to multidimensional arrays. These methods are useful for identifying patterns within a variety of biomedical datasets due to their ability to preserve the organizational structure of experiments and therefore aid in generating meaningful insights. However, missing data in the datasets being analyzed can impose challenges.
View Article and Find Full Text PDFMethicillin-resistant (MRSA) bacteremia is a common and life-threatening infection that imposes up to 30% mortality even when appropriate therapy is used. Despite in vitro efficacy determined by minimum inhibitory concentration breakpoints, antibiotics often fail to resolve these infections in vivo, resulting in persistent MRSA bacteremia. Recently, several genetic, epigenetic, and proteomic correlates of persistent outcomes have been identified.
View Article and Find Full Text PDFImmunoglobulin G (IgG) antibodies coordinate immune effector responses by interacting with effector cells via fragment crystallizable γ (Fcγ) receptors. The IgG Fc domain directs effector responses through subclass and glycosylation variation. Although each Fc variant has been extensively characterized in isolation, during immune responses, IgG is almost always produced in Fc mixtures.
View Article and Find Full Text PDFThe nuclear factor κB (NF-κB) system is critical for various biological functions in numerous cell types, including the inflammatory response, cell proliferation, survival, differentiation, and pathogenic responses. Each cell type is characterized by a subset of 15 NF-κB dimers whose activity is regulated in a stimulus-responsive manner. Numerous studies have produced different mathematical models that account for cell type-specific NF-κB activities.
View Article and Find Full Text PDFUnlabelled: Immunoglobulin (Ig)G antibodies coordinate immune effector responses by selectively binding to target antigens and then interacting with various effector cells via the Fcγ receptors. The Fc domain of IgG can promote or inhibit distinct effector responses across several different immune cell types through variation based on subclass and Fc domain glycosylation. Extensive characterization of these interactions has revealed how the inclusion of certain Fc subclasses or glycans results in distinct immune responses.
View Article and Find Full Text PDFIntegr Biol (Camb)
December 2021
A critical property of many therapies is their selective binding to target populations. Exceptional specificity can arise from high-affinity binding to surface targets expressed exclusively on target cell types. In many cases, however, therapeutic targets are only expressed at subtly different levels relative to off-target cells.
View Article and Find Full Text PDFMultivalent cell surface receptor binding is a ubiquitous biological phenomenon with functional and therapeutic significance. Predicting the amount of ligand binding for a cell remains an important question in computational biology as it can provide great insight into cell-to-cell communication and rational drug design toward specific targets. In this study, we extend a mechanistic, two-step multivalent binding model.
View Article and Find Full Text PDFSystems serology provides a broad view of humoral immunity by profiling both the antigen-binding and Fc properties of antibodies. These studies contain structured biophysical profiling across disease-relevant antigen targets, alongside additional measurements made for single antigens or in an antigen-generic manner. Identifying patterns in these measurements helps guide vaccine and therapeutic antibody development, improve our understanding of diseases, and discover conserved regulatory mechanisms.
View Article and Find Full Text PDF