Publications by authors named "Zhijie Ni"

Article Synopsis
  • * Researchers analyzed data from 156 patients treated surgically for perianal infections at a hospital in China between 2018 and 2022, revealing that the majority had various types of infections, with a notable number experiencing severe postoperative complications.
  • * The findings suggest that surgical intervention may improve prognosis in certain cases, particularly when medical therapy fails, but complications can be reduced by addressing blood count issues before surgery.
View Article and Find Full Text PDF

Background: There are often subtle early symptoms of colorectal cancer, a common malignancy of the intestinal tract. However, it is not yet clear how MYC and NCAPG2 are involved in colorectal cancer.

Method: We obtained colorectal cancer datasets GSE32323 and GSE113513 from the Gene Expression Omnibus (GEO).

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory bowel disease that primarily affects the mucosal layer of the colon (large intestine). However, the relationship between Intercellular Adhesion Molecule-1 (ICAM1), SELL and UC is unclear. The UC datasets, GSE87466 and GSE36807, were downloaded from the gene expression omnibus database.

View Article and Find Full Text PDF

Leukemia is an abnormal proliferation of white blood cells in the bone marrow, resulting in a large accumulation of abnormal leukemia cells in the blood and bone marrow. Hemorrhoids are dilated and swollen veins in the rectum or anal area. However, the relationship between CALM3 and leukemia and hemorrhoids remains unclear.

View Article and Find Full Text PDF

To develop a nomogram prediction model capable of early identification of high-risk infective endocarditis (IE) patients. We retrospectively analyzed the clinical data of 383 patients with IE and divided them into survival and non-survival groups according to different hospitalization outcomes. Univariate and multivariate logistic regression methods were used to screen independent risk factors affecting the survival outcome of IE, and a Nomogram prediction model was constructed by these factors.

View Article and Find Full Text PDF

Aim: The aim of this study was to develop a nomogram based on early clinical features and treatment options for predicting in-hospital mortality in infective endocarditis (IE).

Methods: We retrospectively analyzed the data of 294 patients diagnosed with IE in our hospital from June 01, 2012 to November 24, 2021, determined independent risk factors for in-hospital mortality by univariate and multivariate logistic regression analysis, and established a Nomogram prediction model based on these factors. Finally, the prediction performance of nomogram is evaluated by C-index, bootstrapped-concordance index, and calibration plots.

View Article and Find Full Text PDF

An unbiased phenotypic neuronal assay was developed to measure the synaptotoxic effects of soluble Aβ oligomers. A collection of CNS druglike small molecules prepared by conditioned extraction was screened. Compounds that prevented and reversed synaptotoxic effects of Aβ oligomers in neurons were discovered to bind to the sigma-2 receptor complex.

View Article and Find Full Text PDF

The complete mitochondrial genome sequence of (Pall.) Kuntze was assembled and characterized in the present study. The mitochondrial genome was 347,227 bp in length and had a GC content of 43.

View Article and Find Full Text PDF

With the successful application of single-cell sequencing technology, a large number of single-cell multi-omics sequencing (scMO-seq)data have been generated, which enables researchers to study heterogeneity between individual cells. One prominent problem in single-cell data analysis is the prevalence of dropouts, caused by failures in amplification during the experiments. It is necessary to develop effective approaches for imputing the missing values.

View Article and Find Full Text PDF

Aztreonam, first discovered in 1980, is an FDA approved, intravenous, monocyclic beta-lactam antibiotic. Aztreonam is active against Gram-negative bacteria and is still used today. The oral bioavailability of aztreonam in humans is less than 1%.

View Article and Find Full Text PDF

A series of imidazo[1,2-a]pyridin-6-yl-benzamide analogs was designed as inhibitors of B-RAF. Medicinal chemistry techniques were employed to explore the SAR for this series and improve selectivity versus P38 and VEGFR2.

View Article and Find Full Text PDF

In an effort to identify new antidiabetic agents, we have discovered a novel family of (5-imidazol-2-yl-4-phenylpyrimidin-2-yl)[2-(2-pyridylamino)ethyl]amine analogues which are inhibitors of human glycogen synthase kinase 3 (GSK3). We developed efficient synthetic routes to explore a wide variety of substitution patterns and convergently access a diverse array of analogues. Compound 1 (CHIR-911, CT-99021, or CHIR-73911) emerged from an exploration of heterocycles at the C-5 position, phenyl groups at C-4, and a variety of differently substituted linker and aminopyridine moieties attached at the C-2 position.

View Article and Find Full Text PDF

Alterations in PI3K/AKT signaling are known to be implicated with tumorigenesis. The PI3 kinases family of lipid kinases has been an attractive therapeutic target for cancer treatment. Imidazopyridine compound 1, a potent, selective, and orally available pan-PI3K inhibitor, identified by scaffold morphing of a benzothiazole hit, was further optimized in order to achieve efficacy in a PTEN-deleted A2780 ovarian cancer mouse xenograft model.

View Article and Find Full Text PDF

PI3 kinases are a family of lipid kinases mediating numerous cell processes such as proliferation, migration and differentiation. The PI3 Kinase pathway is often de-regulated in cancer through PI3Kα overexpression, gene amplification, mutations and PTEN phosphatase deletion. PI3K inhibitors represent therefore an attractive therapeutic modality for cancer treatment.

View Article and Find Full Text PDF

Phosphoinositide-3-kinases (PI3Ks) are important oncology targets due to the deregulation of this signaling pathway in a wide variety of human cancers. Herein we describe the structure guided optimization of a series of 2-morpholino, 4-substituted, 6-heterocyclic pyrimidines where the pharmacokinetic properties were improved by modulating the electronics of the 6-position heterocycle, and the overall druglike properties were fine-tuned further by modification of the 4-position substituent. The resulting 2,4-bismorpholino 6-heterocyclic pyrimidines are potent class I PI3K inhibitors showing mechanism modulation in PI3K dependent cell lines and in vivo efficacy in tumor xenograft models with PI3K pathway deregulation (A2780 ovarian and U87MG glioma).

View Article and Find Full Text PDF

We have synthesized and evaluated a new series of acyclic P4-benzoxaborole-based HCV NS3 protease inhibitors. Structure-activity relationships were investigated, leading to the identification of compounds 5g and 17 with low nanomolar potency in the enzymatic and cell-based replicon assay. The linker-truncated compound 5j was found to exhibit improved absorption and oral bioavailability in rats, suggesting that further reduction of molecular weight and polar surface area could result in improved drug-like properties of this novel series.

View Article and Find Full Text PDF

Phospoinositide-3-kinases (PI3K) are important oncology targets due to the deregulation of this signaling pathway in a wide variety of human cancers. A series of 2-morpholino, 4-substituted, 6-(3-hydroxyphenyl) pyrimidines have been reported as potent inhibitors of PI3Ks. Herein, we describe the structure-guided optimization of these pyrimidines with a focus on replacing the phenol moiety, while maintaining potent target inhibition and improving in vivo properties.

View Article and Find Full Text PDF

We disclose here a series of P4-benzoxaborole-substituted macrocyclic HCV protease inhibitors. These inhibitors are potent against HCV NS3 protease, their anti-HCV replicon potencies are largely impacted by substitutions on benzoxaborole ring system and P2∗ groups. P2∗ 2-thiazole-isoquinoline provides best replicon potency.

View Article and Find Full Text PDF

HCV NS3/4A serine protease is essential for the replication of the HCV virus and has been a clinically validated target. A series of HCV NS3/4A protease inhibitors containing a novel acylsulfamoyl benzoxaborole moiety at the P1' region was synthesized and evaluated. The resulting P1-P3 and P2-P4 macrocyclic inhibitors exhibited sub-nanomolar potency in the enzymatic assay and low nanomolar activity in the cell-based replicon assay.

View Article and Find Full Text PDF

A novel series of P2-P4 macrocyclic HCV NS3/4A protease inhibitors with α-amino cyclic boronates as warheads at the P1 site was designed and synthesized. When compared to their linear analogs, these macrocyclic inhibitors exhibited a remarkable improvement in cell-based replicon activities, with compounds 9a and 9e reaching sub-micromolar potency in replicon assay. The SAR around α-amino cyclic boronates clearly established the influence of ring size, chirality and of the substitution pattern.

View Article and Find Full Text PDF

We have designed and synthesized a novel series of alpha-amino cyclic boronates and incorporated them successfully in several acyclic templates at the P1 position. These compounds are inhibitors of the HCV NS3 serine protease, and structural studies show that they inhibit the NS3 protease by trapping the Ser-139 hydroxyl group in the active site. Synthetic methodologies and SARs of this series of compounds are described.

View Article and Find Full Text PDF

A series of tetrahydro-beta-carbolines were identified by HTS as inhibitors of the kinesin Eg5. Molecular modeling and medicinal chemistry techniques were employed to explore the SAR for this series with a focus of removing potential metabolic liabilities and improving cellular potency.

View Article and Find Full Text PDF

Compounds with in vitro anti-hepatitis C virus (HCV) activity are often advanced directly into clinical trials with limited or no in vivo efficacy data. This limits prediction of clinical efficacy of compounds in the HCV drug pipeline, and may expose human subjects to unnecessary treatment effects. The scid-Alb-uPA mouse supports proliferation of transplanted human hepatocytes and subsequent HCV infection.

View Article and Find Full Text PDF

CHK-1 is one of the key enzymes regulating checkpoints in cellular growth cycles. Novel 4-(amino-alkylamino)-3-benzimidazole-quinolinones were prepared and assayed for their ability to inhibit CHK-1. These compounds are potent cell permeable CHK-1 inhibitors and showed synergistic effect with a DNA-damaging agent, camptothecin.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) is a disease that has a growing impact worldwide. A combination therapy comprising interferon-alpha (IFNalpha) and ribavirin represents the current standard treatment for chronic HCV infection, although it has demonstrated limited success and causes some serious side effects. Promising alternative approaches toward the control of HCV infection, and the development of new antiviral agents, include the use of NS3/4A serine protease and NS5B polymerase inhibitors.

View Article and Find Full Text PDF