Publications by authors named "Zhi-Bo Yu"

The Tripartite motif (TRIM) protein family, which contains over 80 members in human sapiens, is the largest subfamily of the RING-type E3 ubiquitin ligase family. It is implicated in regulating various cellular functions, including cell cycle process, autophagy, and immune response. The dysfunction of TRIMs may lead to numerous diseases, such as systemic lupus erythematosus (SLE).

View Article and Find Full Text PDF

The objective of this study was to investigate resting-state functional connectivity (FC) differences in insular sub-regions during the interictal phase in patients with migraine without aura (MWoA). Forty-nine MWoA patients (MWoA group) and 48 healthy individuals (healthy control group) were recruited for this study. All of the subjects underwent neurological examination and magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

The results of neuroimaging studies on migraines have shown that the functions and functional connectivity networks of some brain regions are altered in migraine patients, and different brain structure volumes have also been observed in recent years. However, it is still not known whether the mean thickness of the cortex is different in migraine patients.A total of 48 migraine without aura (MWoA) patients in interictal phase and 48 healthy controls were enrolled in this study.

View Article and Find Full Text PDF

Vitamin K epoxide reductase (VKOR) exists widely in the chloroplasts of higher plants and plays important roles in redox regulation. However, investigations of plant VKOR function have primarily focused on VKOR from Arabidopsis, and knowledge concerning this function is therefore quite limited. In this study, Solanum lycopersicum was used to study the function of VKOR.

View Article and Find Full Text PDF

The Arabidopsis thylakoid membrane bimodular oxidoreductase, AtVKOR, could catalyze disulfide bond formation, and its direct functional domain (thioredoxin-like domain) is located in the thylakoid lumen according to the topological structure. Many proteins have one or several disulfide bonds in the thylakoid lumen, including photosynthetic chain components. A yeast two-hybrid assay was used to identify potential targets for the AtVKOR, and a Trx-like domain was constructed into a BD vector as bait.

View Article and Find Full Text PDF

Many proteins in chloroplast are regulated through the disulfide bond/thiol transformation to realize their activities. A homologue of VKOR (Vitamin K epoxide reductase) in Arabidopsis chloroplast is found to catalyze the disulfide bond formation in vivo and to mediate the specific phylloquinone reduction in vitro. It is also called LTO1 (Lumen Thiol Oxidoreductase 1).

View Article and Find Full Text PDF

Arabidopsis lumen thiol oxidoreductase 1 (LTO1) - the At4g35760 gene product - was previously found to be related to reactive oxygen species (ROS) accumulation. Here, we show that ROS accumulated in a mutant Arabidopsis line (lto1-2, mutant of LTO1/AtVKOR) under osmotic stress at a higher level than that observed in wild-type and transgenic complemented plants of the lto1-2 mutant (lto1-2C, transgenic complemented plants of lto1-2). Because ROS accumulation in osmotic stress is triggered by abscisic acid (ABA), an ABA-responsive gene, Annexin 1 (AnnAt1), was selected to study the response.

View Article and Find Full Text PDF

Homologs of vitamin K epoxide reductase (VKOR) exist widely in plants. However, only VKOR of Arabidopsis thaliana has been the subject of many studies to date. In the present study, the coding region of a VKOR from Solanum lycopersicum (JF951971 in GenBank) was cloned; it contained a membrane domain (VKOR domain) and an additional soluble thioredoxin-like (Trx-like) domain.

View Article and Find Full Text PDF

Tubby-like proteins (TLPs) are found in a broad range of multicellular organisms. In mammals, genetic mutation of tubby or other TLPs can result in certain disease phenotypes related to animal specific characters: obesity, retinal degeneration, hearing loss, et al. Plants also harbor a large number of TLP genes, but the information in plants is far more limited.

View Article and Find Full Text PDF

The thylakoid protein LTO1/AtVKOR-DsbA is recently found to be an oxidoreductase involved in disulfide bond formation and the assembly of photosystem II (PSII) in Arabidopsis thaliana. In this study, experimental evidence showed that LTO1 deficiency caused severe photoinhibition which was related to the xanthophyll cycle and D1 protein degradation. The lto1-2 mutant was more sensitive to intense irradiance than wild type.

View Article and Find Full Text PDF