J Colloid Interface Sci
December 2024
The electrocatalytic reduction of nitrate ions (NO) to nitrogen gas (N) has emerged as an effective approach for mitigating nitrate pollution in water bodies. However, the development of efficient and highly selective cathode materials remains challenging. Conventional copper-based catalysts often exhibit low selectivity because they strongly adsorb oxygen.
View Article and Find Full Text PDFThe alkaline hydrogen evolution reaction (HER) in an anion exchange membrane water electrolyzer (AEMWE) is considered to be a promising approach for large-scale industrial hydrogen production. Nevertheless, it is severely hampered by the inability to operate tolerable HER catalysts consistently under low overpotentials at ampere-level current densities. Here, we develop a universal ligand-exchange (MOF-on-MOF) modulation strategy to synthesize ultrafine FeP and CoP nanoparticles, which are well anchored on N and P dual-doped carbon porous nanosheets (FeP-CoP/NPC).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2024
The development of environmentally sustainable and highly efficient technologies for ammonia production is crucial for the future advancement of carbon-neutral energy systems. The nitrite reduction reaction (NO RR) for generating NH is a promising alternative to the low-efficiency nitrogen reduction reaction (NRR), owing to the low N=O bond energy and high solubility of nitrite. In this study, we designed a highly efficient dual-atom catalyst with Fe-Cu atomic pair sites (termed FeCu DAC), and the as-developed FeCu DAC was able to afford a remarkable NH yield of 24,526 μg h mg at -0.
View Article and Find Full Text PDFSimultaneously achieving high activity for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is the key to constructing rechargeable Zn-air batteries (ZABs). Here the complexation of 1,10-phenanthroline and the spatial confinement effect of closo-[B H ] are used to solidify metal-boron-cluster-organic-polymers on the surface of SiO microspheres to construct a bifunctional oxygen electrocatalyst (FeBCN/NHCS). Driven by FeBCN/NHCS, the half-wave-potential of ORR surpasses that of the Pt/C catalyst, reaching 0.
View Article and Find Full Text PDFDesigning high-efficiency and low-cost catalysts with high current densities for the oxygen evolution reaction (OER) is critical for commercial seawater electrolysis. Here, we present a heterophase synthetic strategy for constructing an electrocatalyst with dense heterogeneous interfacial sites among crystalline NiP, FeP, CeO, and amorphous NiFeCe oxides on nickel foam (NF). The synergistic effect of high-density crystalline and amorphous heterogeneous interfaces effectively promotes the redistribution of the charge density and optimizes the adsorbed oxygen intermediates, lowering the energy barrier and promoting the O desorption, thus enhancing the OER performance.
View Article and Find Full Text PDFCombining morphological control engineering and diatomic coupling strategies, heteronuclear FeCo bimetals are efficiently intercalated into nitrogen-doped carbon materials with star-like to simultaneously accelerate oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The half-wave potential and kinetic current density of the ORR driven by FeCoNC/SL surpass the commercial Pt/C catalyst. The overpotential of OER is as low as 316 mV (η ), and the mass activity is at least 3.
View Article and Find Full Text PDFTo meet the application needs of rechargeable Zn-air battery and electrocatalytic overall water splitting (EOWS), developing high-efficiency, cost-effective, and durable trifunctional catalysts for the hydrogen evolution reaction (HER), oxygen evolution, and reduction reaction (OER and ORR) is extremely paramount yet challenging. Herein, the interface engineering concept and nanoscale hollowing design were proposed to fabricate N-doping carbon nanoboxes confined with Co/MoC nanoparticles. Uniform zeolitic imidazolate framework nanocube was employed as the starting material to construct the trifunctional electrocatalyst through the conformal polydopamine-Mo layer coating and the subsequent pyrolysis treatment.
View Article and Find Full Text PDF