Publications by authors named "Zaixin Zhang"

An excellent reproducibility of high-quality perovskite thin films is imperative for the commercialization of perovskite solar cells. Multifunctional additive engineering is a promising strategy to tackle this challenge as it facilitates simultaneous control over crystallization processes and defect passivation. Here, an innovative strategy is proposed, leveraging -OH, -NH, and -Cl to precisely tune the dipole moment and electronic configuration of multifunctional modified 4-chloro-3-sulfonamide benzoic acid (CSBA) through substituent inductive and conjugation effects.

View Article and Find Full Text PDF

Superwettability has revolutionized catalyst design for multiphase reactions by significantly enhancing interfacial interactions and mass transport. Here the design principles and synthesis strategies of superwetting catalysts are primarily introduced, with a particular focus on their confinement effects and mass transport mechanisms. First, the critical roles of superwettability is highlighted in facilitating efficient reactant mass transport, product desorption, and intermediate confinement within catalysts, which are pivotal for optimizing multiphase reaction systems.

View Article and Find Full Text PDF

FOXM1 is a potent oncogenic transcription factor essential for cancer initiation, progression, and drug resistance. FOXM1 regulatory network is a major predictor of adverse outcomes in various human cancers. Inhibition of FOXM1 transcription factor function is a potential strategy in cancer treatment.

View Article and Find Full Text PDF

Activation of mammalian target of rapamycin (mTOR) signaling pathway is associated with poor prognosis of epithelial ovarian cancer. The TSC1-TSC2 complex is a critical negative regulator of mTOR signaling. Here, we demonstrated that TSC1 was frequently downregulated in high-grade serous ovarian carcinoma (HGSOC) and low TSC1 expression level is associated with advanced tumor stage.

View Article and Find Full Text PDF

Resistance of Plasmodium falciparum to chloroquine (CQ) is determined by the mutation at K76T of the P. falciparum chloroquine resistance transporter (pfcrt) gene and modified by other mutations in this gene and in the P. falciparum multidrug resistance 1 (pfmdr1) gene.

View Article and Find Full Text PDF