Publications by authors named "Zachary Charlop-Powers"

Specialized or secondary metabolites are small molecules of biological origin, often showing potent biological activities with applications in agriculture, engineering and medicine. Usually, the biosynthesis of these natural products is governed by sets of co-regulated and physically clustered genes known as biosynthetic gene clusters (BGCs). To share information about BGCs in a standardized and machine-readable way, the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard and repository was initiated in 2015.

View Article and Find Full Text PDF

Here we describe GoFish, a strategy for single-species environmental DNA (eDNA) presence/absence assays using nested PCR. The assays amplify a mitochondrial 12S rDNA segment with vertebrate metabarcoding primers, followed by nested PCR with M13-tailed, species-specific primers. Sanger sequencing confirms positives detected by gel electrophoresis.

View Article and Find Full Text PDF
Article Synopsis
  • Despite the widespread use of antibiotics, infectious diseases still rank as a major global health threat, with untreatable infections expected to lead to significantly higher mortality rates by 2050.
  • Traditional methods of searching for new antibiotics from cultured bacteria have seen limited success due to a high rate of rediscovery and the underutilization of bacterial diversity.
  • To overcome these challenges, a new culture-independent platform has been developed that utilizes DNA sequencing and bioinformatics to discover novel antibacterial compounds, such as malacidins, which are effective against drug-resistant infections and show promise in wound treatment without promoting bacterial resistance.
View Article and Find Full Text PDF

Although bacterial bioactive metabolites have been one of the most prolific sources of lead structures for the development of small-molecule therapeutics, very little is known about the environmental factors associated with changes in secondary metabolism across natural environments. Large-scale sequencing of environmental microbiomes has the potential to shed light on the richness of bacterial biosynthetic diversity hidden in the environment, how it varies from one environment to the next, and what environmental factors correlate with changes in biosynthetic diversity. In this study, the sequencing of PCR amplicons generated using primers targeting either ketosynthase domains from polyketide biosynthesis or adenylation domains from nonribosomal peptide biosynthesis was used to assess biosynthetic domain composition and richness in soils collected across the Australian continent.

View Article and Find Full Text PDF

The difficulty of censusing marine animal populations hampers effective ocean management. Analyzing water for DNA traces shed by organisms may aid assessment. Here we tested aquatic environmental DNA (eDNA) as an indicator of fish presence in the lower Hudson River estuary.

View Article and Find Full Text PDF

Numerous therapeutically relevant small molecules have been identified from the screening of natural products (NPs) produced by environmental bacteria. These discovery efforts have principally focused on culturing bacteria from natural environments rich in biodiversity. We sought to assess the biosynthetic capacity of urban soil environments using a phylogenetic analysis of conserved NP biosynthetic genes amplified directly from DNA isolated from New York City park soils.

View Article and Find Full Text PDF

Caves are regarded as extreme habitats with appropriate conditions for the development of Actinobacteria. In comparison with other habitats, caves have not yet been the target of intensive screening for bioactive secondary metabolites produced by actinomycetes. As a primary screening strategy, we conducted a metagenomic analysis of the diversity and richness of a key gene required for non-ribosomal peptide (NRP) biosynthesis, focusing on cave-derived sediments from two Canadian caves (a lava tube and a limestone cave) to help us predict whether different types of caves may harbor drug-producing actinobacteria.

View Article and Find Full Text PDF

Here we present a natural product discovery approach, whereby structures are bioinformatically predicted from primary sequence and produced by chemical synthesis (synthetic-bioinformatic natural products, syn-BNPs), circumventing the need for bacterial culture and gene expression. When we applied the approach to nonribosomal peptide synthetase gene clusters from human-associated bacteria, we identified the humimycins. These antibiotics inhibit lipid II flippase and potentiate β-lactam activity against methicillin-resistant Staphylococcus aureus in mice, potentially providing a new treatment regimen.

View Article and Find Full Text PDF

The use of DNA sequencing to guide the discovery of natural products has emerged as a new paradigm for revealing chemistries encoded in bacterial genomes. A major obstacle to implementing this approach to natural product discovery is the transcriptional silence of biosynthetic gene clusters under laboratory growth conditions. Here we describe an improved yeast-based promoter engineering platform (mCRISTAR) that combines CRISPR/Cas9 and TAR to enable single-marker multiplexed promoter engineering of large gene clusters.

View Article and Find Full Text PDF

Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory.

View Article and Find Full Text PDF

Motivation: We have created an R package named phylogeo that provides a set of geographic utilities for sequencing-based microbial ecology studies. Although the geographic location of samples is an important aspect of environmental microbiology, none of the major software packages used in processing microbiome data include utilities that allow users to map and explore the spatial dimension of their data. phylogeo solves this problem by providing a set of plotting and mapping functions that can be used to visualize the geographic distribution of samples, to look at the relatedness of microbiomes using ecological distance, and to map the geographic distribution of particular sequences.

View Article and Find Full Text PDF

In molecular evolutionary analyses, short DNA sequences are used to infer phylogenetic relationships among species. Here we apply this principle to the study of bacterial biosynthesis, enabling the targeted isolation of previously unidentified natural products directly from complex metagenomes. Our approach uses short natural product sequence tags derived from conserved biosynthetic motifs to profile biosynthetic diversity in the environment and then guide the recovery of gene clusters from metagenomic libraries.

View Article and Find Full Text PDF

Recent bacterial (meta)genome sequencing efforts suggest the existence of an enormous untapped reservoir of natural-product-encoding biosynthetic gene clusters in the environment. Here we use the pyro-sequencing of PCR amplicons derived from both nonribosomal peptide adenylation domains and polyketide ketosynthase domains to compare biosynthetic diversity in soil microbiomes from around the globe. We see large differences in domain populations from all except the most proximal and biome-similar samples, suggesting that most microbiomes will encode largely distinct collections of bacterial secondary metabolites.

View Article and Find Full Text PDF

Environmental Surveyor of Natural Product Diversity (eSNaPD) is a web-based bioinformatics and data aggregation platform that aids in the discovery of gene clusters encoding both novel natural products and new congeners of medicinally relevant natural products using (meta)genomic sequence data. Using PCR-generated sequence tags, the eSNaPD data-analysis pipeline profiles biosynthetic diversity hidden within (meta)genomes by comparing sequence tags to a reference data set of characterized gene clusters. Sample mapping, molecule discovery, library mapping, and new clade visualization modules facilitate the interrogation of large (meta)genomic sequence data sets for diverse downstream analyses, including, but not limited to, the identification of environments rich in untapped biosynthetic diversity, targeted molecule discovery efforts, and chemical ecology studies.

View Article and Find Full Text PDF

Metagenomic approaches to natural product discovery provide the means to harvest bioactive small molecules synthesized by environmental bacteria without the requirement of first culturing these organisms. Advances in sequencing technologies and general metagenomic methods are beginning to provide the tools necessary to unlock the unexplored biosynthetic potential encoded by the genomes of uncultured environmental bacteria. Here, we highlight recent advances in sequence-based and functional-based metagenomic approaches that promise to facilitate antibiotic discovery from diverse environmental microbiomes.

View Article and Find Full Text PDF

In this study, we compare biosynthetic gene richness and diversity of 96 soil microbiomes from diverse environments found throughout the southwestern and northeastern regions of the United States. The 454-pyroseqencing of nonribosomal peptide adenylation (AD) and polyketide ketosynthase (KS) domain fragments amplified from these microbiomes provide a means to evaluate the variation of secondary metabolite biosynthetic diversity in different soil environments. Through soil composition and AD- and KS-amplicon richness analysis, we identify soil types with elevated biosynthetic potential.

View Article and Find Full Text PDF

Complex microbial ecosystems contain large reservoirs of unexplored biosynthetic diversity. Here we provide an experimental framework and data analysis tool to facilitate the targeted discovery of natural-product biosynthetic gene clusters from the environment. Multiplex sequencing of barcoded PCR amplicons is followed by sequence similarity directed data parsing to identify sequences bearing close resemblance to biosynthetically or biomedically interesting gene clusters.

View Article and Find Full Text PDF

The cloning of DNA directly from environmental samples provides a means to functionally access biosynthetic gene clusters present in the genomes of the large fraction of bacteria that remains recalcitrant to growth in the laboratory. Herein, we demonstrate a method by which complementation of phosphopantetheine transferase deletion mutants can be used to restore siderophore biosynthesis and to therefore selectively enrich eDNA libraries for nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) gene sequences to unprecedented levels. The common use of NRPS/PKS-derived siderophores across bacterial taxa makes this method generalizable and should allow for the facile selective enrichment of NRPS/PKS-containing biosynthetic gene clusters from large environmental DNA libraries using a wide variety of phylogenetically diverse bacterial hosts.

View Article and Find Full Text PDF

The number of bacterial species estimated to exist on Earth has increased dramatically in recent years. This newly recognized species diversity has raised the possibility that bacterial natural product biosynthetic diversity has also been significantly underestimated by previous culture-based studies. Here, we compare 454-pyrosequenced nonribosomal peptide adenylation domain, type I polyketide ketosynthase domain, and type II polyketide ketosynthase alpha gene fragments amplified from cosmid libraries constructed using DNA isolated from three different arid soils.

View Article and Find Full Text PDF

Paramecium bursaria chlorella virus 1 (PBCV-1), a large DNA virus that infects green algae, encodes a histone H3 lysine 27-specific methyltransferase that functions in global transcriptional silencing of the host. PBCV-1 has another gene a654l that encodes a protein with sequence similarity to the GCN5 family histone acetyltransferases. In this study, we report a 1.

View Article and Find Full Text PDF

The Polybromo (PB) protein functions as a key component of the human PBAF chromatin remodeling complex in regulation of gene transcription. PB is made up of modular domains including six bromodomains that are known as acetyl-lysine binding domains. However, histone-binding specificity of the bromodomains of PB has remained elusive.

View Article and Find Full Text PDF

Nonmammalian glycan structures from helminths act as Th2 adjuvants. Some of these structures are also common on plant glycoproteins. We hypothesized that glycan structures present on peanut glycoallergens act as Th2 adjuvants.

View Article and Find Full Text PDF

Background & Aims: Secreted immunoglobulins play an integral role in host defense at mucosal surfaces, and recent evidence shows that IgG can participate in antigen sampling from the intestinal lumen. We examined whether IgE also could facilitate transepithelial antigen sampling.

Methods: Stool samples from food-allergic patients undergoing oral food challenge were analyzed for CD23 and food-specific IgE.

View Article and Find Full Text PDF

Background: Peanut allergy is a common and severe phenotype of food allergy with a strong genetic component; HLA class II polymorphisms are attractive candidate genes for this disorder.

Objective: To determine possible genotypic associations of HLA class II with peanut allergy and attempt replication of previously reported associations.

Methods: Sibling pairs discordant for peanut allergy were genotyped (low resolution) by polymerase chain reaction-based methods to 7 DQ and 18 DR allele groups.

View Article and Find Full Text PDF