Survival strategy of bacteria is expanded by extrachromosomal elements (ECEs). However, their genetic diversity and functional roles for adaptability are largely unknown. Here, we discover a novel family of intracellular ECEs using 56 saliva samples by developing an efficient microbial DNA extraction method coupled with long-read metagenomics assembly.
View Article and Find Full Text PDFMetagenomics enables direct investigation of the gene content and potential functions of gut bacteria without isolation and culture. However, metagenome-assembled genomes are often incomplete and have low contiguity due to challenges in assembling repeated genomic elements. Long-read sequencing approaches have successfully yielded circular bacterial genomes directly from metagenomes, but these approaches require high DNA input and can have high error rates.
View Article and Find Full Text PDFPurpose: Little is known about the relationship between the human gut microbiota composition and equol-producing ability. The aim of this study is to evaluate the relationship between equol production and the gut microbiota in school-age children, with consideration of sex, age, and exposure to soy isoflavones.
Methods: Participants were 1110 students aged 7-8, 10-11 and 13-14 years.
The plant microbiome is crucial for plant growth, yet many important questions remain, such as the identification of specific bacterial species in plants, their genetic content, and location of these genes on chromosomes or plasmids. To gain insights into the genetic makeup of the rice-phyllosphere, we perform a metagenomic analysis using long-read sequences. Here, 1.
View Article and Find Full Text PDFRecovering a sufficient amount of microbial DNA from extremely low-biomass specimens, such as human skin, to investigate the community structure of the microbiome remains challenging. We developed a sampling solution containing agar to increase the abundance of recovered microbial DNA. Quantitative PCR targeting the 16S rRNA gene revealed a significant increase in the amount of microbial DNA recovered from the developed sampling solution compared with conventional solutions from extremely low-biomass skin sites such as the volar forearm and antecubital fossa.
View Article and Find Full Text PDFThe human gut bacteriophage community (phageome) plays an important role in the host's health and disease; however, the entire structure is poorly understood, partly owing to the generation of many incomplete genomes in conventional short-read metagenomics. Here, we show long-read metagenomics of amplified DNA of low-biomass phageomes with multiple displacement amplification (MDA), involving the development of a novel bioinformatics tool, split amplified chimeric read algorithm (SACRA), that efficiently pre-processed numerous chimeric reads generated through MDA. Using five samples, SACRA markedly reduced the average chimera ratio from 72% to 1.
View Article and Find Full Text PDFIntestinal colonization by bacteria of oral origin has been correlated with several negative health outcomes, including inflammatory bowel disease. However, a causal role of oral bacteria ectopically colonizing the intestine remains unclear. Using gnotobiotic techniques, we show that strains of spp.
View Article and Find Full Text PDFModE is the molybdate-sensing transcription regulator that controls the expression of genes related to molybdate homeostasis in Escherichia coli. ModE is activated by binding molybdate and acts as both an activator and a repressor. By genomic systematic evolution of ligands by exponential enrichment (SELEX) screening and promoter reporter assays, we have identified a total of nine operons, including the hitherto identified modA, moaA, dmsA, and napF operons, of which six were activated by ModE and three were repressed.
View Article and Find Full Text PDF