Publications by authors named "Yun-Ze Li"

Article Synopsis
  • Thymoma, a rare tumor from thymic epithelial cells, is hard to diagnose using traditional methods, resulting in high false negatives and lengthy diagnosis times.
  • This study proposes a new classification method combining hyperspectral imaging and deep learning, capturing and processing thymoma images to enhance diagnostic accuracy.
  • The developed model shows a 95% average accuracy in classifying thymoma, making it a promising tool for automated diagnosis and improving data use and feature learning.
View Article and Find Full Text PDF

Despite paramount applications of chiral trifluoromethylated compounds in medicinal chemistry and materials science, limited strategies have been developed for catalytic asymmetric synthesis of such valuable fluorinated structures. Here, we report a nickel catalyzed enantioselective dicarbofunctionalization of inexpensive industrial chemical 3,3,3-trifluoropropene (TFP) with readily available tertiary alkyl and aryl iodides. The reaction overcomes the β-F elimination side reaction of TFP, and proceeds efficiently under mild reaction conditions.

View Article and Find Full Text PDF

Self-supported materials have been widely used in high-power energy storage devices due to the unique construction offering fast charge transfer from the active material to the conducting substrate. However, the electron conduction in the active material presents limitations on the overall performance of the electrode. In this work, we have fabricated hierarchical ZnO nanoflake arrays vertically grown on a nickel foam substrate and wrapped tightly by wrinkled porous CoS nanofilms (ZnO NFAs/CoS NFs) a hydrothermal process and subsequent electrodeposition.

View Article and Find Full Text PDF

This paper developed a three-dimensional model to simulate the process of atomization and liquid film formation during the air-blast spray cooling technological process. The model was solved using the discrete phase model method. Several factors including the thermodynamic characteristics of the liquid film as well as the spray quality with different spray mass flow rates under different spray heights were numerically investigated and discussed.

View Article and Find Full Text PDF

Scientific experimental racks are an indispensable supporter in space stations for experiments with regard to meeting different temperature and humidity requirements. The diversity of experiments brings enormous challenges to the thermal control system of racks. This paper presents an indirect coupling thermal control single-phase fluid loop system for scientific experimental racks, along with fuzzy incremental control strategies.

View Article and Find Full Text PDF

A proper operating temperature range and an acceptable temperature uniformity are extremely essential for the efficient and safe operation of the Li-ion battery array, which is an important power source of space stations. The single-phase fluid loop is one of the effective approaches for the thermal management of the battery. Due to the limitation that once the structure of the cold plate (CP) is determined, it is difficult to adjust the cooling ability of different locations of the CP dynamically, this may lead to a large temperature difference of the battery array that is attached to the different locations of the CP.

View Article and Find Full Text PDF

This paper presents a nanofluid-based cooling method for a brushless synchronous generator (BLSG) by using AlO lubricating oil. In order to demonstrate the superiority of the nanofluid-based cooling method, analysis of the thermal performance and efficiency of the nanofluid-based cooling system (NBCS) for the BLSG is conducted along with the modeling and simulation cases arranged for NBCS. Compared with the results obtained under the base fluid cooling condition, results show that the nanofluid-based cooling method can reduce the steady-state temperature and power losses in BLSG and decrease the temperature settling time and changing ratio, which demonstrate that both steady-state and transient thermal performance of NBCS are improved as nanoparticle volume fraction (NVF) in nanofluid increases.

View Article and Find Full Text PDF

The aerospace-based heat sink is defined as a substance used for dissipating heat generated by onboard heat loads. They are becoming increasingly scarce in the thermal management system (TMS) of advanced aircraft, especially for supersonic aircraft. In the modern aircraft there are many types of heat sinks whose cooling abilities and performance penalties are usually obviously different from each other.

View Article and Find Full Text PDF

With the expanding applications of carbon nanotubes (CNT) in biomedicine and agriculture, questions about the toxicity and biocompatibility of CNT in humans and domestic animals are becoming matters of serious concern. This study used proteomic methods to profile gene expression in chicken macrophages and heterophils in response to CNT exposure. Two-dimensional gel electrophoresis identified 12 proteins in macrophages and 15 in heterophils, with differential expression patterns in response to CNT co-incubation (0, 1, 10, and 100 µg/mL of CNT for 6 h) (p < 0.

View Article and Find Full Text PDF