Metal-organic frameworks (MOFs) with Lewis acid catalytic sites, such as zirconium-based MOFs (Zr-MOFs), comprise a growing class of phosphatase-like nanozymes that can degrade toxic organophosphate pesticides and nerve agents. Rationally engineering and shaping MOFs from as-synthesized powders into hierarchically porous monoliths is essential for their use in emerging applications, such as filters for air and water purification and personal protection gear. However, several challenges still limit the production of practical MOF composites, including the need for sophisticated reaction conditions, low MOF catalyst loadings in the resulting composites, and poor accessibility to MOF-based active sites.
View Article and Find Full Text PDFThe fabrication of MOF polymer composite materials enables the practical applications of MOF-based technology, in particular for protective suits and masks. However, traditional production methods typically require organic solvent for processing which leads to environmental pollution, low-loading efficiency, poor accessibility, and loss of functionality due to poor solvent resistance properties. For the first time, we have developed a microbial synthesis strategy to prepare a MOF/bacterial cellulose nanofiber composite sponge.
View Article and Find Full Text PDFThe most recent global health crisis caused by the SARS-CoV-2 outbreak and the alarming use of chemical warfare agents highlight the necessity to produce efficient protective clothing and masks against biohazard and chemical threats. However, the development of a multifunctional protective textile is still behind to supply adequate protection for the public. To tackle this challenge, we designed multifunctional and regenerable N-chlorine based biocidal and detoxifying textiles using a robust zirconium metal-organic framework (MOF), UiO-66-NH, as a chlorine carrier which can be easily coated on textile fibers.
View Article and Find Full Text PDFFunctional textiles with advanced moisture management can enhance human comfort and physiological health. However, conventional wet finishing processes used for textiles are usually highly polluting and exhibit poor fastness. Inspired by the strong underwater adhesion properties of mussels based on cation-π interaction, a novel superhydrophilic polymeric molecule with strong cohesion and adhesion property is designed on a poly(ethylene terephthalate) (PET) fabric.
View Article and Find Full Text PDF