Publications by authors named "Yu-Che Ho"

β-Crystalline phase gallium oxide (β-GaO) is an ultrawide bandgap material with prospective applications in electronics and deep ultraviolet (DUV) optoelectronics and optics. The monoclinic crystal structure of β-GaO results in optical anisotropy to incident light with different polarization states. This attribute can lead to different optical applications in the DUV.

View Article and Find Full Text PDF

Vanadium dioxide (VO) has been proposed as a phase-change material in tunable photonic and optoelectronic devices. In such devices, a thin layer of VO is typically deposited on metallic or insulating surfaces. In this Letter, we report the reflectance spectra of a subwavelength structure consisting of a thin layer of VO deposited on a gold film in the near-infrared spectral range, particularly near the wavelength of 1550 nm, which is significant for telecommunication applications.

View Article and Find Full Text PDF

The organic polymer solar cell is recognized as one of the most competitive technologies of the next generation. Au nanoparticles and ZnO nanorods were combined to improve the inverted-structure low-bandgap polymer solar cells and enhance the absorption and efficiency of the devices. However, the Au nanoparticles tend to aggregate in solution, thus reducing the localized surface plasmon resonance (LSPR) effect.

View Article and Find Full Text PDF

We report phosphorescent sensitized fluorescent near-infrared (NIR) light-emitting electrochemical cells (LECs) utilizing a phosphorescent cationic transition metal complex [Ir(ppy)(2)(dasb)](+)(PF(6)(-)) (where ppy is 2-phenylpyridine and dasb is 4,5-diaza-9,9'-spirobifluorene) as the host and two fluorescent ionic NIR emitting dyes 3,3'-diethyl-2,2'-oxathiacarbocyanine iodide (DOTCI) and 3,3'-diethylthiatricarbocyanine iodide (DTTCI) as the guests. Photoluminescence measurements show that the host-guest films containing low guest concentrations effectively quench host emission due to efficient host-guest energy transfer. Electroluminescence (EL) measurements reveal that the EL spectra of the NIR LECs doped with DOTCI and DTTCI center at ca.

View Article and Find Full Text PDF