Publications by authors named "Young Il Jeong"

Antimicrobial resistance (AMR) is recognized as one of the top ten global public health threats. Since the coronavirus disease 2019 pandemic, there has been a notable increase in global concern regarding AMR, leading to a strong call for a government-led response to address this issue. Since 2016, the Korean government has established and implemented a robust social foundation for managing AMR.

View Article and Find Full Text PDF

Oral soft tissue damage can lead to hard tissue damage in the oral cavity, such as periodontal lesions, periapical disorders, cysts, and oral tumors. Cold plasma is known to alleviate inflammation and oxidative stress and promote tissue regeneration, yet the effects of helium plasma on human gingival cells remain poorly understood. In this study, we examined whether helium (He) cold atmospheric pressure plasma (CAP) can induce anti-inflammatory and anti-ferroptotic effects in oral soft tissues by ionizing He gas.

View Article and Find Full Text PDF

The efficacy of photodynamic therapy (PDT) based on traditional photosensitizers is generally limited by the cellular redox homeostasis system due to the reactive oxygen species (ROS) scavenging effect of glutathione (GSH). In this study, buthionine sulfoximine (BSO), a GSH inhibitor, was conjugated with the amine group of chitosan oligosaccharide (COS) using a thioketal linker (COSthBSO) to liberate BSO and chlorine e6 (Ce6) under oxidative stress, and then, Ce6-COSthBSO NP (Ce6-COSthBSO NP), fabricated by a dialysis procedure, showed an accelerated release rate of BSO and Ce6 by the addition of hydrogen peroxide, indicating that nanophotosensitizers have ROS sensitivity. In the in vitro cell culture study using HCT116 colon carcinoma cells, a combination of BSO and Ce6 efficiently suppressed the intracellular GSH and increased ROS production compared to the sole treatment of Ce6.

View Article and Find Full Text PDF

Astaxanthin (AST)-encapsulated nanoparticles were fabricated using glycol chitosan (Chito) through electrostatic interaction (abbreviated as ChitoAST) to solve the aqueous solubility of astaxanthin and improve its biological activity. AST was dissolved in organic solvents and then mixed with chitosan solution, followed by a dialysis procedure. All formulations of ChitoAST nanoparticles showed small diameters (less than 400 nm) with monomodal distributions.

View Article and Find Full Text PDF

The aim of this study is to prepare redox-sensitive nanophotosensitizers for the targeted delivery of chlorin e6 (Ce6) against cervical cancer. For this purpose, Ce6 was conjugated with β-cyclodextrin (bCD) via a disulfide bond, creating nanophotosensitizers that were fabricated for the redox-sensitive delivery of Ce6 against cancer cells. bCD was treated with succinic anhydride to synthesize succinylated bCD (bCDsu).

View Article and Find Full Text PDF

This study prepared copper nanoparticles using an edible leaf extract from (AM-CuNPs) via eco-friendly green synthesis techniques. The size, shape, crystalline nature and functional groups of the synthesized AM-CuNP particles were analyzed by a UV-VIS spectrophotometer and SEM, EDX, TEM, XRD and FT-IR instrumentation. The synthesized AM-CuNPs had spherical shapes with sizes in the range of 30-80 nm and were crystalline in nature.

View Article and Find Full Text PDF

Background: Radiosurgery has been recognized as a reasonable treatment for metastatic brain tumors. Increasing the radiosensitivity and synergistic effects are possible ways to improve the therapeutic efficacy of specific regions of tumors. c-Jun-N-terminal kinase (JNK) signaling regulates H2AX phosphorylation to repair radiation-induced DNA breakage.

View Article and Find Full Text PDF

The aim of this study is to synthesize phenethyl-conjugated chitosan oligosaccharide (COS) (abbreviated as ChitoPEITC) conjugates and then fabricate chlorin E6 (Ce6)-incorporated nanophotosensitizers for photodynamic therapy (PDT) of HCT-116 colon carcinoma cells. PEITC was conjugated with the amine group of COS. Ce6-incorporated nanophotosensitizers using ChitoPEITC (ChitoPEITC nanophotosensitizers) were fabricated by dialysis method.

View Article and Find Full Text PDF

Chlorin E6 (Ce6)-incorporated nanophotosensitizers were fabricated for application in photodynamic therapy (PDT) of oral cancer cells. For this purpose, chitosan oligosaccharide (COS) was conjugated with hydrophobic and reactive oxygen species (ROS)-sensitive moieties, such as phenyl boronic acid pinacol ester (PBAP) via a thioketal linker (COSthPBAP). ThdCOOH was conjugated with PBAP to produce ThdCOOH-PBAP conjugates and then attached to amine groups of COS to produce a COSthPBAP copolymer.

View Article and Find Full Text PDF

The aim of this study is to prepare ciprofloxacin (CIP) or levofloxacin (LEVO)-incorporated and polydopamine (PDA)-coated nephrite composites for application in drug-eluting contact lenses. PDA was coated onto the surface of nephrite to improve antibacterial activity and to payload antibiotics. CIP or LEVO was incorporated into the PDA layer on the surface of nephrite.

View Article and Find Full Text PDF

The aim of this study is to prepare pH- and redox-sensitive nanoparticles for doxorubicin (DOX) delivery against DOX-resistant HuCC-T1 human cholangiocarcinoma (CCA) cells. For this purpose, L-histidine methyl ester (HIS) was attached to chitosan oligosaccharide (COS) via dithiodipropionic acid (abbreviated as ChitoHISss). DOX-incorporated nanoparticles of ChitoHISss conjugates were fabricated by a dialysis procedure.

View Article and Find Full Text PDF

The development of a guided bone regeneration (GBR) membrane with non-mammalian fish collagen has the advantage of low risk for transmission of infectious diseases in tissue regeneration. In this work, a fish collagen/gellan gum and bone graft material (FC/GG-BGM) composite GBR membrane were fabricated through solution blending and casting procedures in a vacuum. The membranes were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy observation (SEM), and atomic force microscope (AFM) analyses.

View Article and Find Full Text PDF

Stimulus-sensitive, nanomedicine-based photosensitizer delivery has an opportunity to target tumor tissues since oxidative stress and the expression of molecular proteins, such as CD44 receptors, are elevated in the tumor microenvironment. The aim of this study is to investigate the CD44 receptor- and reactive oxygen species (ROS)-sensitive delivery of nanophotosensitizers of chlorin e6 (Ce6)-conjugated hyaluronic acid (HA) against HeLa human cervical cancer cells. For the synthesis of nanophotosensitizers, thioketal diamine was conjugated with the carboxyl group in HA and then the amine end group of HA-thioketal amine conjugates was conjugated again with Ce6 (Abbreviated as HAthCe6).

View Article and Find Full Text PDF

Folic acid-conjugated nanophotosensitizers composed of folic acid (FA), poly(ethylene glycol) (PEG) and chlorin e6 (Ce6) tetramer were synthesized using diselenide linkages for reactive oxygen species (ROS)- and folate receptor-specific delivery of photosensitizers. Ce6 was conjugated with 3-[3-(2-carboxyethoxy)-2,2-bis(2-carboxyethoxymethyl)propoxy]propanoic acid (tetra acid, or TA) to make Ce6 tetramer via selenocystamine linkages (TA-sese-Ce6 conjugates). In the carboxylic acid end group of the TA-sese-Ce6 conjugates, FA-PEG was attached again using selenocystamine linkages to make FA-PEG/TA-sese-Ce6 conjugates (abbreviated as FAPEGtaCe6 conjugates).

View Article and Find Full Text PDF

The aim of this study is to fabricate nanophotosensitizers composed of methoxy poly(ethylene glycol) (mPEG), chlorin e6 (Ce6), and phenylboronic acid pinacol ester (PBAP) with diselenide linkages for reactive oxygen species (ROS)-sensitive photodynamic therapy (PDT) of cervical cancer cells. To fabricate nanophotosensitizers, Ce6 was conjugated with mPEG via selenocystamine linkage and then remaining carboxylic acid groups of Ce6 was attached to PBAP (mPEGseseCe6PBAP conjugates). Nanophotosensitizers of mPEGseseCe6PBAP conjugates were prepared by dialysis method.

View Article and Find Full Text PDF

Stimuli-responsive nanoparticles are regarded as an ideal candidate for anticancer drug targeting. We synthesized glutathione (GSH) and magnetic-sensitive nanocomposites for a dual-targeting strategy. To achieve this goal, methoxy poly (ethylene glycol) (MePEG) was grafted to water-soluble chitosan (abbreviated as ChitoPEG).

View Article and Find Full Text PDF

The aim of this study is to fabricate reactive oxygen species (ROS)-sensitive nanoparticles composed of succinyl β-cyclodextrin (bCDsu), memantine and thioketal linkages for application in Alzheimer's disease, and to investigate the suppression of -methyl-d-aspartate (NMDA) receptor 1 (NMDAR1) in cells. Thioketal diamine was attached to the carboxyl group of bCDsu to produce thioketal-decorated bCDsu conjugates (bCDsu-thioketal conjugates) and memantine was conjugated with thioketal dicarboxylic acid (memantine-thioketal carboxylic acid conjugates). Memantine-thioketal carboxylic acid conjugates were attached to bCDsu-thioketal conjugates to produce bCDsu-thioketal-memantine (bCDsuMema) conjugates.

View Article and Find Full Text PDF

The aim of this study was to fabricate a reactive oxygen species (ROS)-sensitive and folate-receptor-targeted nanophotosensitizer for the efficient photodynamic therapy (PDT) of cervical carcinoma cells. Chlorin e6 (Ce6) as a model photosensitizer was conjugated with succinyl β-cyclodextrin via selenocystamine linkages. Folic acid (FA)-poly(ethylene glycol) (PEG) (FA-PEG) conjugates were attached to these conjugates and then FA-PEG-succinyl β-cyclodextrin-selenocystamine-Ce6 (FAPEGbCDseseCe6) conjugates were synthesized.

View Article and Find Full Text PDF

Since urinary tract infections (UTIs) are closely associated with oxidative stress, we developed ROS-sensitive nanoparticles for ciprofloxacin (CIP) delivery for inhibition of UTI. Poly(D,L-lactide-co-glycolide) (PLGA)- selenocystamine (PLGA-selenocystamine) conjugates were attached to methoxypoly(ethylene glycol) (PEG) tetraacid (TA) (TA-PEG) conjugates to produce a copolymer (abbreviated as LGseseTAPEG). Selenocystamine linkages were introduced between PLGA and TA to endow reactive oxygen species (ROS) sensitivity to nanoparticles.

View Article and Find Full Text PDF

We synthesized phenylboronic acid pinacol ester (PBPE)-conjugated hyaluronic acid (HA) via thiobis(ethylamine) (TbEA) linkage (abbreviated as HAsPBPE conjugates) to fabricate the radiosensitive delivery of caffeic acid phenetyl ester (CAPE) and for application in radioprotection. PBPE was primarily conjugated with TbEA and then PBPE-TbEA conjugates were conjugated again with hyaluronic acid using carbodiimide chemistry. CAPE-incorporated nanoparticles of HAsPBPE were fabricated by the nanoprecipitation method and then the organic solvent was removed by dialysis.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the cause of a present pandemic, infects human lung alveolar type 2 (hAT2) cells. Characterizing pathogenesis is crucial for developing vaccines and therapeutics. However, the lack of models mirroring the cellular physiology and pathology of hAT2 cells limits the study.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) has been extensively investigated in the local treatment of cancer due to its potential of reactive oxygen species (ROS) generation in biological systems. In this study, we examined the synergistic effect of combination of CAP and cisplatin-mediated chemotherapy of oral squamous cell carcinoma (OSCC) in vitro. SCC-15 OSCC cells and human gingival fibroblasts (HGF-1) cells were treated with cisplatin, and then, the cells were irradiated with CAP.

View Article and Find Full Text PDF

The advent of the global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates a thorough study of the stability and transmissibility in the environment. We characterized the stability of SARS-CoV-2 in three water matrices: fresh, tap, and seawater. The minimum infective dose of SARS-CoV-2 in Vero cells was confirmed to be 10³ PFU/mL.

View Article and Find Full Text PDF

In this study, FA-PEG-ss-Ce6tri copolymer was synthesized to deliver photosensitizers via redox-sensitive and folate receptor-specific manner. Folic acid (FA) was attached to amine end of poly (ethylene glycol) (PEG) (FA-PEG conjugates) and cystamine-conjugated chlorin e6 (Ce6) (Ce6-cystamine conjugates). FA-PEG was further conjugated with Ce6-cystamine to produce FA-PEG-ss-Ce6 conjugates.

View Article and Find Full Text PDF

The aim of this study is to prepare reactive oxygen species (ROS)-sensitive nanophotosensitizers for targeted delivery of chlorin e6 (Ce6) and photodynamic tumor therapy. For this purpose, thiodipropionic acid (TDPA) was conjugated with phenyl boronic acid pinacol ester (PBAP) (TDPA-PBAP conjugates) and then the TDPA-PBAP conjugates were attached to the chitosan backbone of chitosan-g-methoxy poly(ethylene glycol) (ChitoPEG) copolymer (ChitoPEG-PBAP). Ce6-incorporated ChitoPEG-PBAP nanophotosensitizers have an ROS-sensitive manner in vitro.

View Article and Find Full Text PDF