Widely found in most plant lineages, β-mannans are structurally diverse polysaccharides that can bind to cellulose fibrils to form the complex polysaccharide architecture of the cell wall. How changes in polysaccharide structure influence its cell wall solubility or promote appropriate interaction with cellulose fibrils is poorly understood. Glucomannan backbones acquire variable patterns of galactosyl substitutions, depending on plant developmental stage and species.
View Article and Find Full Text PDFPlant Cell Physiol
December 2024
β-Galactoglucomannan (β-GGM) is a primary cell wall polysaccharide in rosids and asterids. The β-GGM polymer has a backbone of repeating β-(1,4)-glucosyl and mannosyl residues, usually with mono-α-(1,6)-galactosyl substitution or β-(1,2)-galactosyl α-galactosyl disaccharide side chains on the mannosyl residues. Mannan β-galactosyltransferases (MBGTs) are therefore required for β-GGM synthesis.
View Article and Find Full Text PDFJ Appl Glycosci (1999)
February 2024
Different forms of plant biomass have been utilised for various applications in daily life and have gained increasing attention as replacements for fossil fuel-based products in the pursuit of a sustainable society. Plant cell walls, the primary carbon sink of plant biomass, have a high-order polysaccharide architecture consisting of cellulose, hemicelluloses, pectins, lignin and some proteins. Hemicelluloses are a group of polysaccharides that interact with cellulose, which is fundamental to the different properties and functionality of the plant cell walls.
View Article and Find Full Text PDFThe structures of cell wall mannan hemicelluloses have changed during plant evolution. Recently, a new structure called β-galactoglucomannan (β-GGM) was discovered in eudicot plants. This galactoglucomannan has β-(1,2)-Gal-α-(1,6)-Gal disaccharide branches on some mannosyl residues of the strictly alternating Glc-Man backbone.
View Article and Find Full Text PDFArabinogalactan-proteins (AGPs) are mysterious extracellular glycoproteins in plants. Although AGPs are highly conserved, their molecular functions remain obscure. The physiological importance of AGPs has been extensively demonstrated with β-Yariv reagent, which specifically binds to AGPs and upon introduction into cells, causes various deleterious effects including growth inhibition and programmed cell death.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
November 2022
Glycoside hydrolase family 5 (GH5) harbors diverse substrate specificities and modes of action, exhibiting notable molecular adaptations to cope with the stereochemical complexity imposed by glycosides and carbohydrates such as cellulose, xyloglucan, mixed-linkage β-glucan, laminarin, (hetero)xylan, (hetero)mannan, galactan, chitosan, N-glycan, rutin and hesperidin. GH5 has been divided into subfamilies, many with higher functional specificity, several of which have not been characterized to date and some that have yet to be discovered with the exploration of sequence/taxonomic diversity. In this work, the current GH5 subfamily inventory is expanded with the discovery of the GH5_57 subfamily by describing an endo-β-mannanase (CapGH5_57) from an uncultured Bacteroidales bacterium recovered from the capybara gut microbiota.
View Article and Find Full Text PDFHemicellulose polysaccharides influence assembly and properties of the plant primary cell wall (PCW), perhaps by interacting with cellulose to affect the deposition and bundling of cellulose fibrils. However, the functional differences between plant cell wall hemicelluloses such as glucomannan, xylan, and xyloglucan (XyG) remain unclear. As the most abundant hemicellulose, XyG is considered important in eudicot PCWs, but plants devoid of XyG show relatively mild phenotypes.
View Article and Find Full Text PDFEndo-type xylanases are key enzymes in microbial xylanolytic systems, and xylanases belonging to glycoside hydrolase (GH) families 10 or 11 are the major enzymes degrading xylan in nature. These enzymes have typically been characterized using xylan prepared by alkaline extraction, which removes acetyl sidechains from the substrate, and thus the effect of acetyl groups on xylan degradation remains unclear. Here, we compare the ability of GH10 and 11 xylanases, Xyn10A and Xyn11B, from the white-rot basidiomycete to degrade acetylated and deacetylated xylan from various plants.
View Article and Find Full Text PDFCell-wall polysaccharides are synthesized from nucleotide sugars by glycosyltransferases. However, in what way the level of nucleotide sugars affects the structure of the polysaccharides is not entirely clear. guanosine diphosphate (GDP)-mannose (GDP-Man) is one of the major nucleotide sugars in plants and serves as a substrate in the synthesis of mannan polysaccharides.
View Article and Find Full Text PDFPlant Biotechnol (Tokyo)
December 2020
Arabinogalactan-proteins (AGPs) are extracellular proteoglycans, which are presumed to participate in the regulation of cell shape, thus contributing to the excellent mechanical properties of plants. AGPs consist of a hydroxyproline-rich core-protein and large arabinogalactan (AG) sugar chains, called type II AGs. These AGs have a β-1,3-galactan backbone and β-1,6-galactan side chains, to which other sugars are attached.
View Article and Find Full Text PDFArabinogalactan-proteins (AGPs) are a family of plant extracellular proteoglycans implicated in many physiological events. AGP is decorated with type II arabinogalactans (AGs) consisting of a β-1,3-galactan backbone and β-1,6-galactan side chains, to which other sugars are attached. Based on the fact that a type II AG-specific inhibitor, β-Yariv reagent, perturbs growth and development, it has been proposed that type II AGs participate in the regulation of cell shape and tissue organization.
View Article and Find Full Text PDFCarbohydr Res
November 2019
Arabinogalactans (AGs) and arabinogalactan-proteins (AGPs) were partially purified from an extract of fruits of the European pear (Pyrus communis L.) by DEAE-cellulose ion-exchange and Sepharose 6B gel-filtration chromatography. Among 7 AG(P)-containing fractions, a neutral AGP (SE-1) was confirmed to be highly purified (M 67,000) and rich in L-Ara and Gal; this fraction included a small amount (2.
View Article and Find Full Text PDFLarch arabinogalactan (AG) is classified as a plant type II AG. Its basic structure is constituted by a β-1,3-galactan main chain with β-1,6-galactan side chains. But its properties are distinct from other type II AGs.
View Article and Find Full Text PDFArabinogalactan-proteins (AGPs) are plant proteoglycans, which are widely encountered in the plant kingdom, usually localized on the cell surface. The carbohydrate moieties of AGPs consist of β-1,3-galactan main chains and β-1,6-galactan side chains, to which other auxiliary sugars are attached. To date, FvEn3GAL isolated from Flammulina velutipes is the sole β-1,3-galactanase acting on β-1,3-galactan in an endo-manner.
View Article and Find Full Text PDFThe major plant sugar l-arabinose (l-Ara) has two different ring forms, l-arabinofuranose (l-Araf) and l-arabinopyranose (l-Arap). Although l-Ara mainly appears in the form of α-l-Araf residues in cell wall components, such as pectic α-1,3:1,5-arabinan, arabinoxylan, and arabinogalactan-proteins (AGPs), lesser amounts of it can also be found as β-l-Arap residues of AGPs. Even though AGPs are known to be rapidly metabolized, the enzymes acting on the β-l-Arap residues remain to be identified.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
March 2017
Arabinogalactan-proteins (AGPs) are highly diverse plant proteoglycans found on the plant cell surface. AGPs have large arabinogalactan (AG) moieties attached to a core-protein rich in hydroxyproline (Hyp). The AG undergoes hydrolysis by various glycoside hydrolases, most of which have been identified, whereas the core-proteins is presumably degraded by unknown proteases/peptidases secreted from fungi and bacteria in nature.
View Article and Find Full Text PDFHumans are unable to synthesize l-ascorbic acid (AsA), yet it is required as a cofactor in many critical biochemical reactions. The majority of human dietary AsA is obtained from plants. In Arabidopsis thaliana, a GDP-mannose pyrophosphorylase (GMPP), VITAMIN C DEFECTIVE1 (VTC1), catalyzes a rate-limiting step in AsA synthesis: the formation of GDP-Man.
View Article and Find Full Text PDFThe carbohydrate moieties of arabinogalactan-proteins (AGPs) have β-(1 → 3)-galactan backbones to which side chains of (1 → 6)-linked β-Gal residues are attached through O-6. Some of these side chains are further substituted with other sugars. We investigated the structure of L-Fuc-containing oligosaccharides released from the carbohydrate moieties of a radish leaf AGP by digestion with α-L-arabinofuranosidase, followed by exo-β-(1 → 3)-galactanase.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
July 2016
β-1,3:1,4-Glucan is a major cell wall component accumulating in endosperm and young tissues in grasses. The mixed linkage glucan is a linear polysaccharide mainly consisting of cellotriosyl and cellotetraosyl units linked through single β-1,3-glucosidic linkages, but it also contains minor structures such as cellobiosyl units. In this study, we examined the action of an endo-β-1,3(4)-glucanase from Trichoderma sp.
View Article and Find Full Text PDFYariv phenylglycosides [1,3,5-tri(p-glycosyloxyphenylazo)-2,4,6-trihydroxybenzene] are a group of chemical compounds that selectively bind to arabinogalactan proteins (AGPs), a type of plant proteoglycan. Yariv phenylglycosides are widely used as cytochemical reagents to perturb the molecular functions of AGPs as well as for the detection, quantification, purification, and staining of AGPs. However, the target structure in AGPs to which Yariv phenylglycosides bind has not been determined.
View Article and Find Full Text PDF