Unlabelled: Electrowetting (EW) response on a dielectric depends on its permittivity value, Young contact angle and voltage amplitude. We present a large change in EW contact angle, from 163° to 80°, on the bilayer dielectric made up of ferroelectric PVDF-HFP with a thin layer of fluoropolymer. The thickness values of both layers were separately optimized for high effective capacitance essential for the large EW response.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2016
We demonstrate a consistent electrowetting response on ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) insulator covered with a thin Teflon AF layer. This bilayer exhibits a factor of 3 enhancement in the contact angle modulation compared to that of conventional single-layered Teflon AF dielectric. On the basis of the proposed model the enhancement is attributed to the high value of effective dielectric constant (εeff ≈ 6) of the bilayer.
View Article and Find Full Text PDFElectrowetting (EW) offers executive wetting control of conductive liquids on several polymer surfaces. We report a peculiar electrowetting response for aqueous drops on a polystyrene (PS) dielectric surface in the presence of silicone oil. After the first direct current (DC) voltage cycle, the droplet failed to regain Young's angle, yielding contact angle hysteresis, which is close to a value found in ambient air.
View Article and Find Full Text PDF