Publications by authors named "Yipeng Sui"

Background: Cannabidiol (CBD), a non-psychoactive phytocannabinoid of cannabis, is therapeutically used as an analgesic, anti-convulsant, anti-inflammatory, and anti-psychotic drug. There is a growing concern about the adverse side effects posed by CBD usage. Pregnane X receptor (PXR) is a nuclear receptor activated by a variety of dietary steroids, pharmaceutical agents, and environmental chemicals.

View Article and Find Full Text PDF

Background: Exposure to plastic-associated endocrine disrupting chemicals (EDCs) has been associated with an increased risk of cardiovascular disease (CVD) in humans. However, the underlying mechanisms for this association are unclear. Many EDCs have been shown to function as ligands of the nuclear receptor pregnane X receptor (PXR), which functions as xenobiotic sensor but also has pro-atherogenic effects .

View Article and Find Full Text PDF

The pregnane X receptor (PXR) is a nuclear receptor that can be activated by numerous drugs and xenobiotic chemicals. PXR thereby functions as a xenobiotic sensor to coordinately regulate host responses to xenobiotics by transcriptionally regulating many genes involved in xenobiotic metabolism. We have previously reported that PXR has pro-atherogenic effects in animal models, but how PXR contributes to atherosclerosis development in different tissues or cell types remains elusive.

View Article and Find Full Text PDF

Exposure to some environmental pollutants increases the risk of developing inflammatory disorders such as steatosis and cardiometabolic diseases. Diets high in fermentable fibers such as inulin can modulate the gut microbiota and lessen the severity of pro-inflammatory diseases, especially in individuals with elevated circulating cholesterol. Thus, we aimed to test the hypothesis that hyperlipidemic mice fed a diet enriched with 8% inulin would be protected from the pro-inflammatory toxic effects of PCB 126.

View Article and Find Full Text PDF

Quetiapine, one of the most prescribed atypical antipsychotics, has been associated with hyperlipidemia and an increased risk for cardiovascular disease in patients, but the underlying mechanisms remain unknown. Here, we identified quetiapine as a potent and selective agonist for pregnane X receptor (PXR), a key nuclear receptor that regulates xenobiotic metabolism in the liver and intestine. Recent studies have indicated that PXR also plays an important role in lipid homeostasis.

View Article and Find Full Text PDF

Background & Aims: The most prescribed non-nucleoside reverse transcriptase inhibitor, efavirenz, has been associated with elevated risk of dyslipidemia and hepatic steatosis in HIV-infected patients but the underlying mechanisms remain elusive. Herein, we investigated the role of pregnane X receptor (PXR) in mediating the adverse effects of efavirenz on lipid homeostasis.

Methods: Cell-based reporter assays, primary cell culture, and multiple mouse models including conditional knockout and humanized mice were combined to study the impact of efavirenz on PXR activities and lipid homeostasis in vitro and in vivo.

View Article and Find Full Text PDF

Objective: The Wnt/β-catenin signaling is an ancient and evolutionarily conserved pathway that regulates essential aspects of cell differentiation, proliferation, migration and polarity. Canonical Wnt/β-catenin signaling has also been implicated in the pathogenesis of atherosclerosis. Macrophage is one of the major cell types involved in the initiation and progression of atherosclerosis, but the role of macrophage β-catenin in atherosclerosis remains elusive.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a base chemical used extensively in numerous consumer products, and human exposure to BPA is ubiquitous. Higher BPA exposure has been associated with an increased risk of atherosclerosis and cardiovascular disease (CVD) in multiple human population-based studies. However, the underlying mechanisms responsible for the associations remain elusive.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) can give rise to both adipocytes and osteoblasts, but the molecular mechanisms underlying MSC fate determination remain poorly understood. IκB kinase β (IKKβ), a central coordinator of inflammation and immune responses through activation of NF-κB, has been implicated as a critical molecular link between obesity and metabolic disorders. Here, we show that IKKβ can reciprocally regulate adipocyte and osteoblast differentiation of murine and human MSCs through an NF-κB-independent mechanism.

View Article and Find Full Text PDF

IκB kinase β (IKKβ), a central coordinator of inflammatory responses through activation of nuclear factor-κB (NF-κB), has been implicated as a critical molecular link between inflammation and metabolic disorders; however, the role of adipocyte IKKβ in obesity and related metabolic disorders remains elusive. Here we report an essential role of IKKβ in the regulation of adipose remodeling and adipocyte survival in diet-induced obesity. Targeted deletion of IKKβ in adipocytes does not affect body weight, food intake, and energy expenditure but results in an exaggerated diabetic phenotype when challenged with a high-fat diet (HFD).

View Article and Find Full Text PDF

IκB kinase β (IKKβ), a central coordinator of inflammation through activation of nuclear factor-κB, has been identified as a potential therapeutic target for the treatment of obesity-associated metabolic dysfunctions. In this study, we evaluated an antisense oligonucleotide (ASO) inhibitor of IKKβ and found that IKKβ ASO ameliorated diet-induced metabolic dysfunctions in mice. Interestingly, IKKβ ASO also inhibited adipocyte differentiation and reduced adiposity in high-fat (HF)-fed mice, indicating an important role of IKKβ signaling in the regulation of adipocyte differentiation.

View Article and Find Full Text PDF

Recent studies have associated endocrine-disrupting chemical (EDC) exposure with the increased risk of cardiovascular disease in humans, but the underlying mechanisms responsible for these associations remain elusive. Many EDCs have been implicated in activation of the nuclear receptor pregnane X receptor (PXR), which acts as a xenobiotic sensor to regulate xenobiotic metabolism in the liver and intestine. Here we report an important role of intestinal PXR in linking xenobiotic exposure and hyperlipidemia.

View Article and Find Full Text PDF

Juvenile hormone (JH) plays important roles in regulation of many physiological processes including development, reproduction and metabolism in insects. However, the molecular mechanisms of JH signaling pathway are not completely understood. To elucidate the molecular mechanisms of JH regulation of Krüppel homolog 1 gene (Kr-h1) in Aedes aegypti, we employed JH-sensitive Aag-2 cells developed from the embryos of this insect.

View Article and Find Full Text PDF

IκB kinase β (IKKβ), a central coordinator of inflammatory responses through activation of NF-κB, has been implicated in vascular pathologies, but its role in atherogenesis remains elusive. Here, we demonstrate that IKKβ functions in smooth muscle cells (SMCs) to regulate vascular inflammatory responses and atherosclerosis development. IKKβ deficiency in SMCs driven by a SM22Cre-IKKβ-flox system rendered low density lipoprotein receptor-null mice resistant to vascular inflammation and atherosclerosis induced by high-fat feeding.

View Article and Find Full Text PDF

Background: Bisphenol A (BPA) is a base chemical used extensively in many consumer products. BPA has recently been associated with increased risk of cardiovascular disease (CVD) in multiple large-scale human population studies, but the underlying mechanisms remain elusive. We previously reported that BPA activates the pregnane X receptor (PXR), which acts as a xenobiotic sensor to regulate xenobiotic metabolism and has pro-atherogenic effects in animal models upon activation.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) protease inhibitors (PIs) have been used successfully in extending the life span of people infected with HIV. The use of PIs has also been associated with dyslipidemia and an increased risk of cardiovascular disease, but the underlying mechanisms remain elusive. Several PIs have been implicated in activating the nuclear receptor pregnane X receptor (PXR), which acts as a xenobiotic sensor to regulate xenobiotic metabolism in the liver and intestine.

View Article and Find Full Text PDF

Objective: Inflammatory responses are the driving force of atherosclerosis development. IκB kinase β (IKKβ), a central coordinator in inflammation through regulation of nuclear factor-κB, has been implicated in the pathogenesis of atherosclerosis. Macrophages play an essential role in the initiation and progression of atherosclerosis, yet the role of macrophage IKKβ in atherosclerosis remains elusive and controversial.

View Article and Find Full Text PDF

Background: Bisphenol A (BPA) is a base chemical used extensively in many consumer products. BPA and its analogues are present in environmental and human samples. Many endocrine-disrupting chemicals, including BPA, have been shown to activate the pregnane X receptor (PXR), a nuclear receptor that functions as a master regulator of xenobiotic metabolism.

View Article and Find Full Text PDF

The pregnane X receptor (PXR, also known as SXR) is a nuclear hormone receptor activated by xenobiotics as well as diverse sterols and their metabolites. PXR functions as a xenobiotic sensor to coordinately regulate xenobiotic metabolism via transcriptional regulation of xenobiotic-detoxifying enzymes and transporters. Recent evidence indicates that PXR may also play an important role in lipid homeostasis and atherosclerosis.

View Article and Find Full Text PDF

Metamorphosis in insects is regulated by juvenile hormone (JH) and ecdysteroids. The mechanism of 20-hydroxyecdysone (20E), but not of JH action, is well understood. A basic helix-loop-helix (bHLH)-Per-Arnt-Sim (PAS) family member, methoprene tolerant (Met), plays an important role in JH action.

View Article and Find Full Text PDF

Trypsins belong to the serine endoproteases. They are the most important proteases in insects because of their key roles in food digestion and zymogens activation. But there has been little study of the trypsins in the integuments of insects.

View Article and Find Full Text PDF

A 967-bp cDNA, encoding a 31 kDa lipase with an isoelectric point of 8.8, was cloned from Helicoverpa armigera. The gene was named Ha-lipase.

View Article and Find Full Text PDF