Publications by authors named "Yannick Francioli"

There are calls for research into the historical evolutionary relationships between humans and their commensals, as it would greatly inform models that predict the spread of pests and diseases under urban population expansion. The earliest civilizations emerged approximately 10 000 years ago and created conditions ideal for the establishment and spread of commensal urban pests. Commensal relations between humans and pests likely emerged with these early civilizations; however, for most species (e.

View Article and Find Full Text PDF

Studies on animal temperaments (consistent differences in behaviors across contexts) and behavioral syndromes (suites of correlated behaviors across contexts) have surged in recent decades. Accordingly, behavioral ecologists have gained greater appreciation for their evolutionary role and significance. Yet, despite their importance as potential evolutionary drivers, research focused on temperament and syndromes in shaping hybridization events is vastly understudied.

View Article and Find Full Text PDF

Species tree inference is often assumed to be more accurate as datasets increase in size, with whole genomes representing the best-case-scenario for estimating a single, most-likely speciation history with high confidence. However, genomes may harbor a complex mixture of evolutionary histories among loci, which amplifies the opportunity for model misspecification and impacts phylogenetic inference. Accordingly, multiple distinct and well-supported phylogenetic trees are often recovered from genome-scale data, and approaches for biologically interpreting these distinct signatures are a major challenge for evolutionary biology in the age of genomics.

View Article and Find Full Text PDF

The common bed bug, Cimex lectularius, is a globally distributed pest insect of medical, veterinary, and economic importance. Previous reference genome assemblies for this species were generated from short-read sequencing data, resulting in a ~650 Mb composed of thousands of contigs. Here, we present a haplotype-resolved, chromosome-level reference genome, generated from an adult Harlen strain female specimen.

View Article and Find Full Text PDF

Both the metabolic theory of ecology and dynamic energy budget theory predict that climate influences body size through its effects on first-order determinants of energetics: reactive temperatures, carbon resources and oxygen availability. Although oxygen is seldom limiting in terrestrial systems, temperature and resources vary spatially. We used redundancy analyses and variation partitioning to evaluate the influence of climatic temperature, precipitation and their seasonalities on multivariate body size across the distributions of four species of the western rattlesnake group in North America (, , and ).

View Article and Find Full Text PDF

Understanding and predicting the relationships between genotype and phenotype is often challenging, largely due to the complex nature of eukaryotic gene regulation. A step towards this goal is to map how phenotypic diversity evolves through genomic changes that modify gene regulatory interactions. Using the Prairie Rattlesnake (Crotalus viridis) and related species, we integrate mRNA-seq, proteomic, ATAC-seq and whole-genome resequencing data to understand how specific evolutionary modifications to gene regulatory network components produce differences in venom gene expression.

View Article and Find Full Text PDF

Predators must contend with numerous challenges to successfully find and subjugate prey. Complex traits related to hunting are partially controlled by a large number of co-evolved genes, which may be disrupted in hybrids. Accordingly, research on the feeding ecology of animals in hybrid zones has shown that hybrids sometimes exhibit transgressive or novel behaviors, yet for many taxa, empirical studies of predation and diet across hybrid zones are lacking.

View Article and Find Full Text PDF

Climate change is an important driver of range shifts and community composition changes. Still, little is known about how the responses are influenced by the combination of land use, species interactions and species traits. We integrate climate and distributional data for 131 butterfly species in Sweden and Finland and show that cumulative species richness has increased with increasing temperature over the past 120 years.

View Article and Find Full Text PDF

Advances in medicine and biotechnology rely on a deep understanding of biological processes. Despite the increasingly available types and amounts of omics data, significant knowledge gaps remain, with current approaches to identify and curate missing annotations being limited to a set of already known reactions. Here, we introduce etwork ntegrated omputational xplorer for ap nnotation of tabolism (NICEgame), a workflow to identify and curate nonannotated metabolic functions in genomes using the ATLAS of Biochemistry and genome-scale metabolic models (GEMs).

View Article and Find Full Text PDF

We used observational data collected during a mark-recapture study that generated a total of 7503 captures of 6108 unique individuals representing three endangered butterfly species to quantify inter-and intraindividual variation in temperature utilization and examine how activity patterns vary according to season, time of day, and ambient temperature. The Marsh Fritillary, the Apollo, and the Large Blue differed in utilized temperatures and phenology. Their daily activity patterns responded differently to temperature, in part depending on whether they were active in the beginning, middle or end of the season, in part reflecting interindividual variation and intraindividual flexibility, and in part owing to differences in ecology, morphology, and colouration.

View Article and Find Full Text PDF

Eusocial societies are characterized by a clear division of labour between non-breeding workers and breeding queens, and queens often do not contribute to foraging, defence and other maintenance tasks. It has been suggested that the structure and organization of social mole-rat groups resembles that of eusocial insect societies. However, the division of labour has rarely been investigated in wild mole-rats, and it is unknown whether breeders show decreased foraging activity compared with non-breeding helpers in natural groups.

View Article and Find Full Text PDF