Background: Human urine-derived stem cells (hUSCs) are a novel type of mesenchymal stem cells (MSCs) originating from the kidney, with promising potential for personalized therapies. However, it remains unclear whether hUSCs can be successfully isolated from individuals of different ages and disease states-including healthy young individuals, healthy elderly individuals, and patients with diabetic nephropathy (DN), as well as their therapeutic potential and mechanism in DN.
Methods: hUSCs were isolated from healthy young men (hUSC-HY), healthy elderly men (hUSC-HE), and male DN patients (hUSC-DN), and their biological characteristics were systematically evaluated.
Aims: Despite islet transplantation has proved a great potential to become the standard therapy for type 1 diabetes mellitus (T1DM), this approach remains limited by ischemia, hypoxia, and poor revascularization in early post-transplant period as well as inflammation and life-long host immune rejection. Here, we investigate the potential and mechanism of human amniotic mesenchymal stem cells (hAMSCs)-islet organoid to improve the efficiency of islet engraftment in immunocompetent T1DM mice.
Main Methods: We generated the hAMSC-islet organoid structure through culturing the mixture of hAMSCs and islets on 3-dimensional-agarose microwells.
Realization of practical terahertz wireless communications still faces many challenges. The receiver with high sensitivity is important for THz wireless communications. Here we demonstrate a terahertz receiver based on the cesium Rydberg atoms in a room-temperature vapor cell.
View Article and Find Full Text PDF