Publications by authors named "Ya-Fen Lin"

Objective: To report a case of glycogen storage disease (GSD) type Ia misdiagnosed as multiple acyl-coenzyme a dehydrogenase deficiency (MADD) by mass spectrometry.

Methods: A 7 months old boy was admitted to our hospital for elevated transaminase levels lasting more than 1 month. His blood biochemistry showed hypoglycemia, metabolic acidosis, hyperlipidemia, elevated lactate and uric acid, elevated alanine amino transferase (ALT), aspartate amino transaminase (AST) and gamma-glutamyl transferase (GGT).

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores how metals like copper (Cu) and iron (Fe) in rice could protect against herbivorous pests, potentially reducing chemical pesticide use.
  • - Intermediate levels of Cu and high Fe concentrations hindered root growth and grain yield, but high Cu levels effectively reduced pest growth while impacting rice negatively.
  • - A low concentration of Cu (10 μM) showed no harmful effects on rice growth, suggesting that careful application of Cu might be an effective pest management strategy without damaging the plants.
View Article and Find Full Text PDF
Article Synopsis
  • * The study revealed that indium primarily causes direct toxicity to rice plants, leading to significant physical changes such as leaf necrosis and root structural alterations, rather than simply causing phosphate deficiency.
  • * Applying extra phosphate can help mitigate indium's harmful effects by decreasing its absorption in rice, indicating that strategies like indium immobilization could be effective for managing this pollution in agricultural settings.
View Article and Find Full Text PDF

This study developed a nutritionally valuable product with bioactive activity that improves the quality of bread. Djulis (), a native plant of Taiwan, was fermented using 23 different lactic acid bacteria strains. BCRC10697 was identified as the ideal strain for fermentation, as it lowered the pH value of samples to 4.

View Article and Find Full Text PDF

Zn deficiency is the most common micronutrient deficit in rice but Zn is also a widespread industrial pollutant. Zn deficiency responses in rice are well documented, but comparative responses to Zn deficiency and excess have not been reported. Therefore, we compared the physiological, transcriptional and biochemical properties of rice subjected to Zn starvation or excess at early and later treatment stages.

View Article and Find Full Text PDF

Background: Outbreaks of insect pests in paddy fields cause heavy losses in global rice yield annually, a threat projected to be aggravated by ongoing climate warming. Although significant progress has been made in the screening and cloning of insect resistance genes in rice germplasm and their introgression into modern cultivars, improved rice resistance is only effective against either chewing or phloem-feeding insects.

Results: In this study, the results from standard and modified seedbox screening, settlement preference and honeydew excretion tests consistently showed that Qingliu, a previously known leaffolder-resistant rice variety, is also moderately resistant to brown planthopper (BPH).

View Article and Find Full Text PDF

Cnaphalocrocis medinalis is a major insect pest of rice in Asia. A few defensive enzymes were reported to show higher activities in a resistant rice line (Qingliu) than in a susceptible rice line (TN1) upon leaffolder infestation. However, the overall molecular regulation of the rice defense response against leaffolder herbivory is unknown.

View Article and Find Full Text PDF

New heteroleptic Ru(ii) complexes consisting of pyridylimine as an ancillary ligand were synthesized and characterized for applications in dye sensitized solar cells. Complexes with cis and trans configurations around the central ruthenium metal were obtained using simple synthetic protocols by varying the substituents on the pyridylimine ligands. The geometries of these complexes were confirmed by single crystal X-ray analysis.

View Article and Find Full Text PDF

TiO2 nanocubes were synthesized via hydrolysis condensation of titanium tetra-isopropoxide (TTIP) in aqueous media, followed by hydrothermal treatment with ammonium salts. Various ammonium salts with different alkyl chain such as ammonium hydroxide (NH4OH), tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH) and tetrabutylammonium hydroxide (TBAH) were investigated. The crystalline phase, shape, and morphology of TiO2 nanocubes were studied by XRD, TEM, and SEM analysis.

View Article and Find Full Text PDF

We report the synthesis, characterization, and photovoltaic properties of four ruthenium complexes (CI101, CBTR, CB111, and CB108) having various N-heterocyclic carbene ancillary ligands, pyridine-imidazole, -benzimidazole, -dithienobenzimidazole, and -phenanthroimidazole, respectively. These complexes were designed to investigate the effect of extended conjugation ordained from ring fusion on the power conversion efficiencies of the solar cells. The device sensitized by CB108, the pyridine-phenanthroimidazole conjugated complex, showed an improved efficiency (9.

View Article and Find Full Text PDF

In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs) are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I), Zn(II) or Cd(II). The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b) and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3) were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP) and expressed in Saccharomyces cerevisiae cells.

View Article and Find Full Text PDF

Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis.

View Article and Find Full Text PDF

A magnetic adsorbent, amine-functionalized silica magnetite (NH2-Al/SiO2/Fe3O4), has been synthesized to behave as an cationic adsorbent by adjusting the pH value of the aqueous solution to make amino groups protonated. NH2-Al/SiO2/Fe3O4 was used to adsorb phosphate ions in an aqueous solution in a batch system, and the maximum adsorption were found to occur at pH 3.0.

View Article and Find Full Text PDF

Noccaea caerulescens is an extremophile plant species belonging to the Brassicaceae family. It has adapted to grow on soils containing high, normally toxic, concentrations of metals such as nickel, zinc, and cadmium. Next to being extremely tolerant to these metals, it is one of the few species known to hyperaccumulate these metals to extremely high concentrations in their aboveground biomass.

View Article and Find Full Text PDF

This study is to optimize the multi-quality performance of magnetic catalyst/ozone process by combining a technique for order performance by similarity to ideal solution (TOPSIS) with the Taguchi method, which simultaneously has the best decomposition rate constant of benzoic acid and removal rate constant of total organic carbon (TOC). The optimal experimental parameters were pH of 7, initial concentration of 75 ppm and catalyst loading of 0.05 g/L.

View Article and Find Full Text PDF
Article Synopsis
  • Noccaea caerulescens populations exhibit significant variations in their ability to accumulate and tolerate metals like zinc, cadmium, and nickel, prompting researchers to investigate these traits through high-throughput sequencing of root transcriptomes from three distinct accessions.
  • The study identified critical differences in genes related to metal ion transport, binding, and antioxidant activities, which are thought to influence the plants' metal hyperaccumulation and hypertolerance capabilities.
  • It highlights both known and new candidate genes that contribute to these traits, suggesting that understanding these genetic differences can aid in developing plants that are more effective for cleaning up metal-contaminated environments.
View Article and Find Full Text PDF

When plants are subjected to high metal exposure, different plant species take different strategies in response to metal-induced stress. Largely, plants can be distinguished in four groups: metal-sensitive species, metal-resistant excluder species, metal-tolerant non-hyperaccumulator species, and metal-hypertolerant hyperaccumulator species, each having different molecular mechanisms to accomplish their resistance/tolerance to metal stress or reduce the negative consequences of metal toxicity. Plant responses to heavy metals are molecularly regulated in a process called metal homeostasis, which also includes regulation of the metal-induced reactive oxygen species (ROS) signaling pathway.

View Article and Find Full Text PDF

Stem cell antigen (Sca) 1, a glycosyl phosphatidylinositol-anchored protein localized to lipid rafts, is upregulated in the heart during myocardial infarction and renovascular hypertension-induced cardiac hypertrophy. It has been suggested that Sca-1 plays an important role in myocardial infarction. To investigate the role of Sca-1 in cardiac hypertrophy, we performed aortic banding in Sca-1 cardiac-specific transgenic mice, Sca-1 knockout mice, and their wild-type littermates.

View Article and Find Full Text PDF

A magnetic adsorbent, amine-functionalized silica magnetite (NH(2)/SiO(2)/Fe(3)O(4)), has been synthesized to behave as an anionic or cationic adsorbent by adjusting the pH value of the aqueous solution to make amino groups protonic or neutral. NH(2)/SiO(2)/Fe(3)O(4) were used to adsorb copper ions (metal cation) and Reactive Black 5 (RB5, anionic dye) in an aqueous solution in a batch system, and the maximum adsorption were found to occur at pH 5.5 and 3.

View Article and Find Full Text PDF
Article Synopsis
  • Zinc is a crucial micronutrient for plants, and when they experience a deficiency, they adapt by increasing their ability to take up zinc.
  • Researchers identified two transcription factors, bZIP19 and bZIP23, in the model plant Arabidopsis thaliana that play a key role in this adaptation.
  • Mutations in both bZIP genes lead to severe sensitivity to zinc deficiency, showing these factors are essential for regulating the expression of genes necessary for zinc uptake.
View Article and Find Full Text PDF

ZIP transporters (ZRT, IRT-like proteins) are involved in the transport of iron (Fe), zinc (Zn) and other divalent metal cations. The expression of IRT3, a ZIP transporter, is higher in the Zn/cadmium (Cd) hyperaccumulator Arabidopsis halleri than is that of its ortholog in Arabidopsis thaliana, which implies a positive association of its expression with Zn accumulation in A. halleri.

View Article and Find Full Text PDF

Experiments on high temperature oxidation of multi-chlorinated hydrocarbons, tetrachloroethylene (C2Cl4), with hydrocarbon fuels, CH4, were performed in a 15 mm i.d. tubular flow reactor.

View Article and Find Full Text PDF