During peripheral nerve (PN) development, unmyelinated axons (nmAs) tightly fasciculate before being separated and enveloped by non-myelinating Schwann cells (nmSCs), glial cells essential for maintaining nmA integrity. How such a switch from axon-axon to axon-glia interactions is achieved remains poorly understood. Here, we find that inactivating SC-derived SEMA3B or its axonal receptor components in mice leads to incomplete nmA separation and envelopment by nmSCs, eliciting hyperalgesia and allodynia.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
April 2024
Ischemic stroke is the main cause of death and disability, and microglia play a crucial role in the pathophysiology of hypoxic ischemic brain injury. We found that SENP3 is highly expressed in the early stages of ischemic stroke in both in vivo and in vitro mouse models, and may be related to the deSUMOylation of the key kinase MKK7 in the TLR4/p-JNK signaling pathway. Knocking down SENP3 can inhibit the deSUMOylation of MKK7, thereby inhibiting the activation of the TLR4/p-JNK signaling pathway in an in vitro stroke model.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
January 2022
Background & Aims: Defective rostrocaudal colonization of the gut by vagal neural crest cells (vNCCs) results in Hirschsprung's disease (HSCR), which is characterized by aganglionosis in variable lengths of the distal bowel. Skip segment Hirschsprung's disease (SSHD), referring to a ganglionated segment within an otherwise aganglionic intestine, contradicts HSCR pathogenesis and underscores a significant gap in our understanding of the development of the enteric nervous system. Here, we aimed to identify the embryonic origin of the ganglionic segments in SSHD.
View Article and Find Full Text PDFJ Neurosci
August 2020
Precise extrinsic afferent (visceral sensory) and efferent (sympathetic and parasympathetic) innervation of the gut is fundamental for gut-brain cross talk. Owing to the limitation of intrinsic markers to distinctively visualize the three classes of extrinsic axons, which intimately associate within the gut mesentery, detailed information on the development of extrinsic gut-innervating axons remains relatively sparse. Here, we mapped extrinsic innervation of the gut and explored the relationships among various types of extrinsic axons during embryonic development in mice.
View Article and Find Full Text PDFParkinson's disease (PD) is a progressive neurological disease, one of the pathological characteristics is a gradual loss of midbrain dopaminergic (mDA) neurons in the substantia nigra pars compacta (SNpc). In animals, PD-like symptoms can be induced by genetic mutations or by neurotoxins such as 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). It has been reported that deletion of autophagy-related gene 5 (Atg5) in the brain can disrupt neural function and is accompanied by the accumulation of cytoplasmic inclusions.
View Article and Find Full Text PDFNeuroscience
December 2016
Parkinson's disease (PD) is a neurodegenerative disease caused by a gradual loss of midbrain dopaminergic (mDA) neurons in the substantia nigra pars compacta (SNpc) during aging. 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) is one of the neurotoxins used widely to induce PD-like symptoms in PD animal models, including rodents and non-human primates. It has been reported that deletion of autophagy-related gene 7 (Atg7) in the brain results in a reduction of mDA neurons in adulthood.
View Article and Find Full Text PDFExp Ther Med
November 2014
The blood-brain barrier (BBB) is critical to the health of the central nervous system (CNS). The possibility that 5-hydroxytryptamine (5-HT) participates in the alteration of the BBB has been previously demonstrated. Tryptophan hydroxylase 2 (TPH2) is a unique genetic enzyme isoform that catalyzes the rate-limiting step in the biosynthesis of 5-HT in the CNS; however, its role in the permeability changes of the BBB remains unclear.
View Article and Find Full Text PDFThe canonical Wnt signaling pathway is critical for the development of midbrain dopaminergic (DA) neurons, and recent studies have suggested that disruption of this signaling cascade may underlie the pathogenesis of Parkinson's disease (PD). However, the exact role of the canonical Wnt signaling pathway, including low-density lipoprotein receptor-related protein 5 and 6 (LRP5/6) and β-catenin components, in a mouse model of PD remains unclear. In the present study, the tyrosine hydroxylase (TH)-Cre transgenic mouse line was used to generate mice with the specific knockout of LRP5, LRP6 or β-catenin in DA neurons.
View Article and Find Full Text PDF