Electrolytic water-splitting has the advantages of high efficiency, environmental friendliness, and sustainability. It is becoming a leading approach for producing hydrogen. In order to improve the efficiency of water-splitting, a bifunctional electrocatalyst with high performance is needed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
The rapid flame annealing (FA) method has the advantages of convenience and rapidity with an instantaneous temperature rise and fall process. In this work, the influence of flame annealing duration on the front side and back side of CuBiO-based photocathodes was investigated, and photoelectrodes with variable compositions were obtained. A highly efficient CuO@CuO/CuBiO photoelectrode was successfully obtained via a two-step FA method within a few seconds.
View Article and Find Full Text PDFAdv Sci (Weinh)
February 2025
Hydrogen peroxide (HO) is an important chemical in synthetic chemistry with huge demands. Photocatalytic synthesis of HO via oxygen reduction and water oxidation reactions (ORR and WOR) is considered as a promising and desirable solution for on-site applications. However, the efficiency of such a process is low due to the poor solubility of molecular oxygen and the rapid reverse reaction of hydroxyl radicals (OH) with hydrogen atoms (H).
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
α-FeO is a very attractive photoanode for photoelectrochemical (PEC) water decomposition. However, its short diffusion length, poor conductivity, and fast charge-carrier recombination severely limit device efficiency. Here, coloading an AlO passivation layer and a CoO cocatalyst onto Ti-doped α-FeO was carried out to promote PEC water oxidation by improving charge separation and transfer at the electrode/electrolyte interface and inhibiting photocarrier recombination.
View Article and Find Full Text PDFThe use of low-cost and effective cocatalyst is a potential strategy to optimize the effectiveness of photoelectrochemical (PEC) water splitting. In this study, tungsten phosphide (WP) is introduced as a remarkably active cocatalyst to enhance the PEC efficiency of a BiWO photoanode. The onset potential of BiWO/WP demonstrates a negative shift, while the photocurrent density demonstrates a significant 5.
View Article and Find Full Text PDF