Publications by authors named "Xinpeng Fu"

The application fields of high-temperature titanium alloys are mainly concentrated in the aerospace, defense and military industries, such as the high-temperature parts of rocket and aircraft engines, missile cases, tail rudders, etc., which can greatly reduce the weight of aircraft while resisting high temperatures. However, traditional high-temperature titanium alloys containing multiple types of elements (more than six) have a complex impact on the solidification, deformation, and phase transformation processes of the alloys, which greatly increases the difficulty of casting and deformation manufacturing of aerospace and military components.

View Article and Find Full Text PDF

A novel, to the best of our knowledge, structure for spectral beam combining (SBC) is proposed, utilizing a polarization-separated feedback (PSF). A polarization separation element is introduced to separate the laser beam into a TE-polarized light and a TM-polarized light. The lower-power light is selected as the external feedback to adjust the resonant wavelength, while the other light is combined spectrally.

View Article and Find Full Text PDF

Developing integrable, nanoscale, and low-energy-consumption lasers is a crucial step toward on-chip optical communications and computing technologies. The strong exciton-photon interaction that emerged in monolayer transition metal dichalcogenides (TMDs) holds promise for engineering and integration. Herein, we prepare the MoSe/microsphere cavities excitonic lasers by placing SiO microspheres on top of a monolayer MoSe film.

View Article and Find Full Text PDF

Cu(i)-Catalyzed diastereoselective carboboration of α-alkyl-substituted α,β-unsaturated carboxylic esters to produce β-boryl-α-quaternary carbon esters was developed. The carbon skeletons of dialkyl sulfates, primary allyl halides, and benzyl bromides were transferred to the α-position of the substrates to provide products in moderate to good yields with a diastereoselectivity of >95% in most cases. Substrates bearing a β-(hetero)aryl substituent gave higher diastereoselectivities than those bearing a linear β-alkyl substituent.

View Article and Find Full Text PDF

Tailoring the excitonic properties in two-dimensional monolayer transition metal dichalcogenides (TMDs) through strain engineering is an effective means to explore their potential applications in optoelectronics and nanoelectronics. Here we report pressure-tuned photon emission of trions and excitons in monolayer MoSe via a diamond anvil cell (DAC) through photoluminescence measurements and theoretical calculations. Under quasi-hydrostatic compressive strain, our results show neutral (X) and charged (X) exciton emission of monolayer MoSe can be effectively tuned by alcohol mixture vs inert argon pressure transmitting media (PTM).

View Article and Find Full Text PDF

Transition-metal dichalcogenides (TMDs) are promising materials for optoelectronic devices. Their lattice and electronic structural evolutions under high strain conditions and their relations remain open questions. We exert pressure on WS monolayers on different substrates, namely, Si/SiO substrate and diamond anvil surface up to ∼25 GPa.

View Article and Find Full Text PDF