Publications by authors named "Weicheng Tian"

Fatty acid metabolism (FAM) is a crucial metabolic characteristic of tumor cells, playing a role in various pathological processes during tumor development. Till now, the prognostic role of FAM-related genes of prostate cancer (PCa) is far from fully investigation. The combinations of 10 machine learning algorithms were applied in this study.

View Article and Find Full Text PDF

Mono(2-ethylhexyl) phthalate (MEHP) is a ubiquitous environmental contaminant and endocrine-disrupting chemical (EDC), identified as a potential carcinogen. Emerging studies have begun to elucidate the impact of MEHP on prostate cancer (PCa), yet its pathogenic effects and the underlying molecular mechanisms remain unclear. This study seeks to explore the molecular basis through which MEHP affects the onset and progression of PCa.

View Article and Find Full Text PDF

Introduction: The peroxiredoxins (PRDXs) family plays a crucial role in balancing reactive oxygen species (ROS) levels in tumor cells. However, its potential role in prognosis and therapy response of prostate cancer (PCa) remains unknown.

Methods: In this study, we utilized 2 public single-cell RNA datasets and 8 bulk-RNA datasets to investigate the clinical value of six PRDXs family members in PCa.

View Article and Find Full Text PDF

The castration-resistant prostate cancer (CRPC) remains an incurable disease. Metformin has demonstrated a potential therapeutic effect on CRPC. However, the poor clinical performance of metformin against cancer may be due to its clinical dose being much lower than the anticancer concentration used in pre-clinical experiments.

View Article and Find Full Text PDF

Objective: This study aimed to establish a prognostic model for clinical T1N0M1 (cT1N0M1) lung adenocarcinoma patients to evaluate the prognosis of patients in terms of overall survival (OS) rate and cancer-specific survival (CSS) rate.

Methods: Data of patients with metastatic lung adenocarcinoma from 2010 to 2016 were collected from the Surveillance, Epidemiology and End Results database. Multivariate Cox regression analysis was conducted to identify relevant prognostic factors and used to develop nomograms.

View Article and Find Full Text PDF

Colorectal cancer (CRC) continues to be one of the most malignant cancers with a high mortality rate to date. Promoting the radio-responsiveness of CRC is of great importance for local control and prognosis. In this study, we examined the roles of exosomal microRNA-19b (miR-19b) in CRC radioresistance.

View Article and Find Full Text PDF

Radiotherapy represents the most effective nonsurgical therapy, whereas acquired radioresistance remains a major challenge in glioma treatment. Deregulation of long noncoding RNAs (lncRNAs) is frequently involved in tumorigenesis. This study investigates the role of LINC01123 in radioresistance in glioma with molecules involved.

View Article and Find Full Text PDF

GaInP/GaAs/Ge triple-junction concentrator solar cells with significant efficiency enhancement were demonstrated with antireflective ZnO nanoneedles. The novel nanostructure was attained with a Zn(NO)-based solution containing vitamin C. Under one sun AM 1.

View Article and Find Full Text PDF

A photoactivated gas detector operated at room temperature was microfabricated using a simple hydrothermal method. We report that the photoactivated gas detector can detect toluene using a UV illumination of 2 μW/cm². By ultraviolet (UV) illumination, gas detectors sense toluene at room temperature without heating.

View Article and Find Full Text PDF

An electrokinetic trapping (EKT)-based nanofluidic preconcentration device with the capability of label-free monitoring trapped biomolecules through real-time dual-loop electric current measurement was demonstrated. Universal current-voltage (I-V) curves of EKT-based preconcentration devices, consisting of two microchannels connected by ion-selective channels, are presented for functional validation and optimal operation; universal onset current curves indicating the appearance of the EKT mechanism serve as a confirmation of the concentrating action. The EKT mechanism and the dissimilarity in the current curves related to the volume flow rate (Q), diffusion coefficient (D), and diffusion layer (DL) thickness were explained by a control volume model with a five-stage preconcentration process.

View Article and Find Full Text PDF

This paper compares the selectivity and discusses the response mechanisms of various surface-modified, single-walled carbon nanotube (SWCNT)-coated sensor arrays for the detection of volatile organic compounds (VOCs). Two types of sensor platforms, chemiresistor and quartz crystal microbalance (QCM), were used to probe the resistance changes and absorption masses during vapor sensing. Four sensing materials were used in this comparison study: pristine, acidified, esterified, and surfactant (sodium dodecyl sulfate, SDS)-coated SWCNTs.

View Article and Find Full Text PDF

We present a low-cost method to fabricate large-area polycarbonate AR nanostructures to improve the luminous intensity and image clarity of a commercial 2.0-inch display panel in bright condition. The polycarbonate AR nanostructures were nanoimprinted by the graded-density nanoporous silicon template with nanoparticle-catalyzed etching.

View Article and Find Full Text PDF

In this work, deionized (DI) water dissociation was used to treat and change the contact angle of the surface of stainless steel substrates followed by the spin coating of P(VDF-TrFE) material for the fabrication of tactile sensors. The contact angle of the stainless steel surface decreased 14° at -30 V treatment; thus, the adhesion strength between the P(VDF-TrFE) thin film and the stainless steel substrate increased by 90%. Although the adhesion strength was increased at negative voltage treatment, it is observed that the crystallinity value of the P(VDF-TrFE) thin film declined to 37% at -60 V.

View Article and Find Full Text PDF

This paper presents the development of tactile sensors using the sol-gel process to deposit a PZT thin-film from 250 nm to 1 μm on a flexible stainless steel substrate. The PZT thin-film tactile sensor can be used to measure human pulses from several areas, including carotid, brachial, finger, ankle, radial artery, and the apical region. Flexible PZT tactile sensors can overcome the diverse topology of various human regions and sense the corresponding signals from human bodies.

View Article and Find Full Text PDF

A precisely controlled metallic nanomesh was fabricated by using nanosphere lithography to pattern the silver thin film to form hexagonal nanohole arrays with excellent uniformity, high conductivity and good transparency. An Alq(3) based OLED, with the silver nanomesh electrode of high ðll factor of 70.2% demonstrated a considerable luminous efðciency of 4.

View Article and Find Full Text PDF

In this study, electron beam lithography, rather than the most popular method, chemical synthesis, is used to construct periodical TiO(2) nanowires for a gas sensor with both robust and rapid performance. The effects of temperature on the sensing response and reaction time are analyzed at various operation temperatures ranging from 200 to 350 °C. At the optimized temperature of 300 °C, the proposed sensor repeatedly obtained a rise/recovery time (ΔR: 0.

View Article and Find Full Text PDF

We report the design, fabrication, and evaluation of a μ-preconcentrator chip that utilizes an array of solid-phase microextraction (SPME) needles coated with in-situ-grown carbon adsorbent film. The structure of the SPME needle (diameter=100 μm, height=250 μm) array inside the sampling chamber was fabricated using a deep reactive-ion etching (DRIE) process to enhance the attachable surface area for adsorbent film. Heaters and temperature sensors were fabricated onto the back of a μ-preconcentrator chip using lithography patterning and a metal lift-off process.

View Article and Find Full Text PDF

The authors demonstrated an efficient color conversion layer (CCL) by using nanosphere arrays in down-converted white organic light-emitting diodes (WOLEDs). The introduced periodical nanospheres not only helped extract the confined light in devices, but also increased the effective light path to achieve high-efficiency color conversion. By applying a CCL with red phosphor on a 400-nm-period nanosphere array, we achieved 137% color conversion ratio for blue OLEDs, which was 2.

View Article and Find Full Text PDF

The fabrication, assembly, and initial testing of a hybrid microfabricated gas chromatograph (microGC) is described. The microGC incorporates capabilities for on-board calibration, sample preconcentration and focused thermal desorption, temperature-programmed separations, and "spectral" detection with an integrated array of microsensors, and is designed for rapid determinations of complex mixtures of environmental contaminants at trace concentrations. Ambient air is used as the carrier gas to avoid the need for on-board gas supplies.

View Article and Find Full Text PDF